Modélisation multiphysique d'un four de frittage expérimental

Dans le cadre du développement et de l’amélioration des performances des vecteurs de production d’énergie bas carbone, le CEA dispose d’une plateforme logicielle permettant de modéliser le comportement du combustible nucléaire de sa fabrication jusqu’à son utilisation en réacteur. Le frittage, étape-clé dans la fabrication, est le procédé de traitement thermique utilisé pour consolider et densifier le combustible nucléaire afin de former la solution solide U1-yPuyO2-x. Le cycle de frittage comporte généralement une montée en température avec une rampe linéaire, un plateau à température constante et un refroidissement contrôlé, avec, éventuellement une adaptation continue du potentiel d’oxygène afin d’obtenir le rapport oxygène sur métal visé. Une première modélisation d’un four de frittage industriel a été réalisée en utilisant la suite logicielle OpenFOAM et la librairie C++ éléments-finis DIFFPACK. Une seconde étape vise la validation des modèles utilisés dans la simulation de ce four industriel sur la base d’une approche à effets séparés et la modélisation d’un four de frittage de laboratoire. Ce post doctorat sera réalisé à Cadarache au sein du laboratoire de modélisation multi-échelle (LM2C) du département d’études des combustibles, en étroite collaboration avec les équipes d’expérimentateurs du Laboratoire de chimie du Solide et d’Elaboration des Matériaux d’actinides (LSEM) de Marcoule qui développent et exploitent le four expérimental. La collaboration portera sur les données d’entrée de la modélisation (la géométrie du four, les conditions de température et d’atmosphère) et les mesures à comparer avec les données de simulations. Le post-doctorant évoluera dans un environnement stimulant, au sein d’un laboratoire dynamique où travaillent déjà une quinzaine de doctorants et post-doctorants, en contact avec des experts en modélisation de la physique du combustible.
Le travail sera valorisé par des présentations en conférences et la publication d’articles.

Accélération par GPU d'un code de dynamique des gaz préexistant.

Le code Triclade, développé au CEA-DAM, est un code DNS tridimensionnel écrit en C++ MPI résolvant les équations de Navier-Stockes compressibles pour un mélange binaire de gaz parfaits sur des maillages cartésiens. Il est utilisé, en particulier, pour simuler le mélange turbulent se produisant aux interfaces entre fluides sous l'effet d'instabilités hydrodynamiques.

Le(a) candidat(e) aura pour tâche l'amélioration des performances de l'application en mettant en place un nouveau degré de parallélisme basé sur une programmation sur carte graphique (GPU). Le code ainsi produit devra réduire au mieux la divergence entre les approches CPU et GPU, en permettant notamment d'unifier les appels aux fonctions calculatoires de manière à masquer l'utilisation explicite des accélérateurs. Pour ce faire, il (elle) pourra se baser sur une API existante (telle que Kokkos), ou, suivant les besoins, des directives de précompilations (telles que OpenMP). Le(a) candidat(e) sera amené(e) à collaborer fortement avec plusieurs autres équipes travaillant autour de l'accélération GPU.
Une bonne connaissance de la programmation C/C++, des systèmes distribués (calculateurs) ainsi que de la programmation sur carte graphique seront nécessaires à la concrétisation de ces objectifs. Des connaissances en mécanique des fluides seraient appréciées.

Etudes numériques de l’interaction laser plasma en champ intermédiaire sur le Laser Megajoule

Dans les expériences de Fusion par Confinement Inertiel (FCI), des faisceaux lasers intenses traversent une cavité remplie de gaz qui est rapidement ionisé. Ils se propagent dans le plasma ainsi formé et sont soumis à des instabilités néfastes pour réaliser la fusion. Les techniques de lissage optique consistent à briser les cohérences spatiales et temporelles des faisceaux lasers afin que leurs tailles et temps caractéristiques soient plus petits que ceux requis pour le développement des instabilités. La brisure de la cohérence spatiale est réalisée par une lame de phase qui va répartir l’énergie laser en une multitude de grains de lumière appelés points chauds. La brisure de cohérence temporelle s’effectue en élargissant le spectre grâce à un modulateur de phase et en dispersant chaque fréquence grâce à un réseau. La connaissance des caractéristiques des points chauds (largeur, longueur, contraste, temps de cohérence, vitesses …) est importante pour prédire le niveau des instabilités qui peut évoluer en fonction du temps et au cours de la propagation des faisceaux.
Par souci de simplicité, les instabilités se développant lors de l’interaction laser-plasma sont souvent étudiées autour du point de focalisation des faisceaux lasers. Or dans les expériences de FCI, les faisceaux sont focalisés près du trou d’entrée laser de la cavité qui a une longueur d’environ 1 cm. Des instabilités peuvent donc se produire à la fois en amont du meilleur foyer (à l'extérieur de la cavité) et aussi et surtout en aval de celui-ci (assez loin à l’intérieur de la cavité). Le but de ce contrat post-doctoral est d’étudier le développement des instabilités lorsqu’il se produit en champ intermédiaire (loin du meilleur foyer du faisceau laser). Nous nous concentrerons sur les instabilités de propagation (autofocalisation, diffuson Brillouin vers l’avant) et sur la rétrodiffusion Brillouin. Le travail sera réalisé grâce à des outils de diagnostics et des codes numériques existants.

Convection naturelle à haut Rayleigh pour la Securité des réacteurs: 2ème année

Le postdoc est associé à la deuxième année du projet CORAYSE. La sécurité des réacteurs de type SMR est basée sur des systèmes passifs : le réacteur est placé dans une piscine où la chaleur résiduelle est évacuée par convection naturelle en cas d’accident. Toutefois à ce jour on n’appréhende pas, ni par le calcul ni sur la base d’expériences, l’échange thermique entre le réacteur et l’eau, car la convection naturelle n’a fait l’objet de corrélations d’échange thermique que jusqu’à des nombres de Rayleigh Ra de 10^12 (le nombre de Rayleigh Ra décrit le rapport entre le transport par convection naturelle et le transport diffusif). Pour un SMR, ce Ra peut dépasser 10^16. La maitrise par des calculs numériques et des expériences est donc un enjeu majeur de sécurité. Un tel objectif nécessite toutefois que plusieurs défis soient relevés :
• Un défi numérique : la capacité du code à modéliser de manière suffisamment précise et dans un temps raisonnable des écoulements turbulents à très haut nombre de Rayleigh est encore du domaine de la recherche. La simulation numérique aux plus hauts Ra envisagés représente un défi en termes de temps calcul, nécessitant des simulations sur des calculateurs « exascale ». Une adaptation des codes existants à cette situation est donc indispensable.
• Un défi expérimental : au niveau de la validation du code, la réalisation d’une expérience représentative, dans laquelle un nombre de Rayleigh supérieur à 10^16 puisse être atteint, nécessite une expérience à l’échelle 1 (donc très onéreuse), ou bien une expérience avec un autre fluide – par exemple l’hélium liquide - dont les propriétés physiques (viscosité, dilatation thermique,…) permettront d’atteindre en laboratoire des Rayleigh comparables.

Construction d'un modèle numérique à l'échelle mésoscopique de pièces composites macroscopiques

La modélisation des matériaux composites à renfort fibreux à fibres continues (préforme) peut être réalisée à l’échelle mésoscopique par éléments finis en maillant la préforme tissée ainsi que la matrice. La géométrie de ces constituants peut être générée à partir d’une géométrie idéale ou issue d’imagerie par tomographie X (jumeau numérique). Une limite reste cependant le volume de matériau pouvant être représenté. Si le calcul classique par éléments finis est envisageable pour le matériau moyen, au point courant, les singularités géométriques (renfort, liaison, etc.) sont difficiles à prendre en compte (nombre de mailles important). Il est alors nécessaire de recourir à un calcul multi-échelle méso-macro. De récents développements en calcul par éléments finis montrent que la résolution du problème posé par le calcul sur modèle numérique d’une structure macroscopique décrite à l’échelle méso est possible en découpant ce calcul macros en une série de calculs mésos ("décomposition en sous-domaines"). Il faut alors disposer d’une description numérique macroscopique du composite, y compris dans les zones de singularités. L’objectif du stage post-doctoral proposé est de construire un outil logiciel permettant de reproduire une architecture composite (renfort à fibres continues) d’une pièce de forme donnée. Une attention particulière sera portée aux géométries de renfort possibles (tissés, rapportés, ...). Le choix des outils utilisés (mailleur, langage, …) sera étudié au début du stage.

Simulation d'un milieu poreux soumis à des impacts à haute vitesse

La maîtrise de la réponse dynamique de matériaux complexes (mousse, céramique, métal, composite) suite à des sollicitations intenses (dépôt d’énergie, impact hyper-véloce) est un enjeu majeur pour de nombreuses applications développées et conduites par la Direction des Applications Militaires (DAM) du Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA). Dans cette optique, le CEA CESTA développe des modélisations mathématiques du comportement de matériaux face à des impacts hypervéloces. Ainsi, dans le cadre de l’ANR ASTRID SNIP (Simulation Numérique des Impacts dans les milieux poreux) en collaboration avec l’IUSTI (Université Aix-Marseille), des études sur le thème de la modélisation des matériaux poreux sont menées. Elles ont pour objectif d’aboutir à l’élaboration de modèles innovants plus robustes et palliant les déficits théoriques des méthodes existantes (consistance thermodynamique, préservation du principe d’entropie) Dans le cadre de ce post-doc, le candidat devra effectuer, dans un premier temps, une revue bibliographique pour comprendre les méthodes et modèles développés au sein de l’IUSTI et du CEA CESTA et comprendre leurs différences. Dans un second temps, il étudiera la compatibilité entre le modèle développé à l’IUSTI et les méthodes de résolution numériques utilisées dans le code de calcul de dynamique rapide du CEA CESTA. Il proposera des adaptations et des améliorations de ce modèle pour prendre en compte l’ensemble des phénomènes physiques que l’on souhaite capturer (plasticité, contraintes de cisaillement, présence d’inclusions fluides, endommagement) et rendre son intégration dans le code de calcul possible. Après une phase de développement, la validation de l’ensemble de ces travaux sera effectuée via des comparaisons avec les modèles physico-numériques existants ainsi que la confrontation avec les résultats expérimentaux d’impacts issus de la littérature et/ou effectués au CEA/DAM.

Conception de Matrice 2D pour Calcul Quantique sur Silicium avec Validation par Simulation

L'objectif est de concevoir une structure matricées 2D pour le calcul quantique sur silicium afin d'envisager des structures de plusieurs centaines de Qubits physique.

En particulier le sujet sera focalisé sur :
- La fonctionnalité de la structure (interaction coulombienne, RF et quantique)
- Les contraintes de fabrication (simulation et contrainte de procédé réaliste)
- La variabilité des composants (Prise en compte de paramètre de variabilité et défectivité réaliste)
- Les contraintes induites sur les algorithmes (code de correction d'erreur)
- Scalabilité de la structure vers des milliers de Qubit physiques

Le candidat travaillera au sein d'un projet de plus de cinquante personnes avec des expertises couvrant la conception, la fabrication, la caractérisation et la modélisation des qubits de spin ainsi que des disciplines connexes (cryoélectronique, algorithmes quantiques, correction d'erreurs quantiques, …)

Modélisation du gonflement gazeux à basse puissance dans un combustible de 4ème génération

Le CEA étudie actuellement un projet de cœur de réacteur 4ème génération à neutrons rapides (RNR) intrinsèquement sûr [1], fonctionnant avec de faibles puissances linéiques ce qui conduit à une rétention accrue des gaz de fission dans le combustible. Il est nécessaire, pour conforter les gains attendus en marge de sûreté, de disposer d’une modélisation fine de la thermomécanique de ce concept. Le modèle de comportement des gaz de fission actuellement utilisé au CEA dans l’outil GERMINAL de simulation de l’aiguille combustible RNR, intégré dans la plateforme PLEIADES, est basé sur une approche macroscopique empirique dont la base de calibration est centrée sur des objets irradiés à forte puissance, présentant une faible rétention gazeuse [2]. Ce sujet de post-doctorat vise à étendre aux RNR un modèle de gaz existant, MARGARET, qui a été développé pour les combustibles oxydes dans les réacteurs à eau pressurisée (REP) [3] et qui en outre s’avère pertinent pour les fonctionnements à basse puissance. Une des difficultés sera la prise en compte de l’évolution de la microstructure du combustible qui est plus importante en RNR qu’en REP et qui a été abordée dans [4]. La première partie du travail consistera à intégrer le modèle de gaz MARGARET dans l’outil de calcul GERMINAL. Cette tâche nécessitera de coupler les grandeurs associées à la résolution des équilibres des différentes physiques (thermique, mécanique, et gonflement gazeux) pour construire le schéma de couplage. La seconde partie du travail s’intéressera aux différentes composantes à l’origine du gonflement, via l’analyse détaillée des examens post-irradiatoires destructifs réalisés au CEA Cadarache (LECA – Laboratoire d’Examens des Combustibles Actifs). Des outils d’analyse d’image pourront être utilisés pour caractériser la distribution de la porosité dans le combustible. Sur cette base, il sera ensuite nécessaire de calibrer les paramètres du modèle MARGARET pour réduire les écarts entre calculs et mesures.

Modélisation CFD des mouvements de gaz en cavités salines

Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.

Effet de la présence de TSV sur la fiabilité des interconnexions dans le cadre des capteurs photographiques 3 couches

Parce que la réduction des dimensions basée sur la loi empirique de Moore a atteint ses limites, une technologie d'intégration alternative, telle que l'intégration tridimensionnelle (3DI) devient le courant dominant pour de plus en plus d'applications telles que les capteurs d'image CMOS (CIS), les mémoires... La 3ème génération de CIS empile jusqu'à 3 puces interconnectées par une liaison hybride (hybrid bonding) et des vias traversant le silicium - haute densité (TSV-HD). Le bon fonctionnement et l'intégrité des dispositifs et des circuits doivent être maintenus dans une telle intégration, en particulier dans le voisinage proche des TSVs. Le budget thermique, la dilatation du cuivre (Cu pumping/protrusion), le gauchissement des plaquettes de silicium minces peuvent entraîner des problèmes de rendement électrique et de fiabilité et doivent être, en conséquence, étudiés.
Le travail consiste à évaluer l'impact du TSV sur les performances et la fiabilité (électromigration, claquage diélectrique, BTI...) des interconnexions (BEOL) et des composants actifs (FEOL). Les données acquises permettront de définir des règles de conception et en particulier une zone interdite/d'exclusion potentielle (KOZ) et de calibrer un modèle éléments finis.

Top