Modélisation de la sédimentation et de la coalescence des gouttes dans les mélangeurs-décanteurs pour l’extraction liquide–liquid
La transition énergétique vers des technologies bas carbone (batteries Li-ion, photovoltaïque, éolien) dépend de matériaux critiques comme les terres rares (Dy, Nd, Pr) et certains métaux (Co, Ni, Li). Leur extraction pose des problèmes environnementaux, et leur recyclage reste limité du fait de leur faible concentration dans des déchets complexes, rendant leur séparation difficile. L’extraction liquide-liquide s’impose comme une méthode efficace pour purifier ces mélanges, mais son industrialisation est freinée par une compréhension partielle des phénomènes physico-chimiques impliqués, notamment dans les mélangeurs-décanteurs. Ces équipements, alliant chambre de mélange et zone de décantation, sont prisés pour leur compacité et leur rendement énergétique. Toutefois, les modèles actuels restent semi-empiriques, centrés sur la phase de mélange, et donc insuffisants pour prédire le comportement à grande échelle. Dans ce contexte, le programme national PEPR « Recyclabilité et réutilisation des matériaux » soutient une initiative du CEA visant à développer un jumeau numérique de ces dispositifs. Le postdoctorat proposé s’intègre à ce projet et porte sur la modélisation du décanteur. Le candidat mènera des expériences sur des émulsions bien caractérisées, injectées dans une maquette dédiée pour étudier leur sédimentation et l’évolution de la taille des gouttes. Ces données expérimentales serviront à valider un modèle décrivant le transport gravitaire et hydrodynamique des gouttelettes, ainsi que les phénomènes de coalescence et de rupture. Ce modèle sera ensuite couplé à celui de la chambre de mélange déjà en cours de développement, en vue d’obtenir un premier jumeau numérique.
Etude et développement d’un banc de test modulaire « high-side » pour la validation applicative de composant Grand Gap
Les transistors grand gap (GaN, SiC) jouent un rôle clé dans l’électronique de puissance, mais leur intégration industrielle reste freinée par des difficultés de mise en œuvre. Le composant 'high-side', au sein d’une structure en bras de pont, est particulièrement sensible aux transitoires de tension et de courant, lesquels dépendent fortement du routage, de la topologie et des modes de commutation (ZVS, ZCS). Son caractère flottant rend les mesures complexes et peut perturber les commutations lors des essais applicatifs. Une méthodologie adaptée aux transitoires rapides a été développée lors d’une thèse, aboutissant à un banc de test breveté pour la caractérisation des composants 'low-side'. Le sujet du post-doctorat présenté ici vise à adapter cette méthodologie aux composants 'high-side' qui sont plus complexe à piloter et mesurer, afin de caractériser et modéliser le vieillissement dû aux transitoires de grille dans des conditions réalistes. Le banc de test permettra de générer des profils de stress reproductibles sur 'low-side' et 'high-side', et de mesurer précisément des paramètres clés comme la tension de seuil ou les instabilités dynamiques. Pour atteindre ces objectifs, un nouveau banc sera conçu, intégrant une commande spécifique et des systèmes de mesure adaptés, en vue de tests applicatifs et d’essais de vieillissement ciblés.
Elaboration et caractérisation d'un matériau composite oxyde/oxyde
Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une bonne tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un procédé d’élaboration de CMC oxyde/oxyde à fibres longues et/ou courtes possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Synthèse, caractérisation et modélisation moléculaire des phases M-(A)-S-H
Le principal produit d’hydratation des ciments à base de magnésium et silicate est le silicate de magnésium hydraté (M-S-H), dont la composition évolue avec le temps et les interactions environnementales [réfs. 1,2]. Les rapports Mg/Si varient de 0,67 à 1,5, avec une teneur en eau variable et une possible incorporation d’aluminium. Les modèles atomistiques des phases M-(A)-S-H restent largement inexplorés [réf. 4], et la plupart de leurs propriétés sont encore inconnues, ce qui complique l’établissement de relations composition–propriétés.
Ce projet vise à élucider la structure atomique des silicates de magnésium hydratés (alumino)silicatés (M-(A)-S-H), en combinant techniques expérimentales et simulations atomistiques, et à estimer leurs propriétés mécaniques. L’étude se concentrera sur des compositions de M-(A)-S-H pertinentes pour les applications nucléaires ou les matrices cimentaires bas carbone
Implémentations sécurisées de la cryptographie post-quantique basée sur le code : co-conception logiciel-matériel et résistance aux canaux auxiliaires
L’informatique quantique menace les schémas cryptographiques traditionnels tels que RSA et ECC, rendant nécessaire le développement de la cryptographie post-quantique (PQC). Le processus de standardisation du NIST a sélectionné des algorithmes comme HQC, un mécanisme d'encapsulation de clé basé sur les codes. L’implémentation efficace et sécurisée de ces algorithmes, notamment dans des environnements contraints en ressources comme l’IoT et les systèmes embarqués, demeure un défi. Les attaques physiques, en particulier les attaques par canaux auxiliaires et par injection de fautes, nécessitent des contre-mesures robustes telles que le masquage, le "shuffling" et le "hiding". Ces protections introduisent toutefois des surcoûts en performance, rendant indispensable la co-conception matériel/logiciel. Le projet se concentre sur l’implémentation logicielle sécurisée de HQC avec une forte résistance aux attaques physiques. Les plateformes ciblées incluent les systèmes embarqués basés sur RISC-V. La recherche porte sur la conception et l’évaluation de contre-mesures contre les canaux auxiliaires sur ces plateformes. Les phases ultérieures étendront le travail à des prototypes FPGA pour valider la sécurité en matériel. Une exploration ASIC pourra suivre afin d’optimiser la surface, la consommation et les performances sous contraintes de sécurité. Le candidat développera également des techniques algorithmiques et architecturales de mitigation des attaques. Les contributions incluront des outils open source et des benchmarks. Ce travail soutiendra le déploiement sécurisé de la PQC dans des applications concrètes.
VALERIAN: simulation du transport d'électrons pour les modules les modules ITkPix d'ATLAS
Une description précise du transport des électrons et des photons dans la matière est cruciale dans plusieurs domaines phares du CEA, notamment la radioprotection et l’instrumentation nucléaire. Leur validation nécessite des études paramétriques dédiées et des mesures. Étant donné le peu de données expérimentales publiques, des comparaisons entre codes de calcul sont aussi utilisées. L’enjeu pour les années à venir est une qualification de ces codes dans un large domaine d'énergie, certains écarts entre leurs résultats ayant été identifiés lors d’études préliminaires du SERMA faisant intervenir le transport couplé de neutrons, photons et électrons. Le projet VALERIAN consiste à saisir l’opportunité créée par une campagne de prise de données unique en son genre prévue en 2025-2026 à l’IRFU (DRF) pour mieux caractériser ces écarts. En effet, l’IRFU s’est engagé à contrôler au moins 750 modules à pixels pour le nouveau trajectographe de l’expérience ATLAS, dans le cadre de la jouvence des grands détecteurs du CERN. De nombreuses mesures avec des sources bêta seront réalisées en 2025-2026 pour la qualification de ces modules.
Etude de la THERmodiffusion des Petits Polarons dans UO2
Le sujet est publié sur le site recrutement de CEA à l'adresse suivante :
https://www.emploi.cea.fr/offre-de-emploi/emploi-post-doctorat-etude-en-ab-initio-de-la-thermodiffusion-des-petits-polarons-dans-UO2-h-f_36670.aspx
Module PV réparable intégrant un élément de délamination par ultrason
Les panneaux photovoltaïques (PV) ont une durée de vie limitée en raison de la dégradation de leur performance, de défauts opérationnels ou de facteurs économiques. D’ici dix ans, des millions de tonnes de panneaux PV deviendront des déchets, posant des défis environnementaux et sociétaux significatifs. L'Union Européenne a reconnu ce problème par la directive WEEE pour la gestion des déchets électriques et électroniques.
Les modules PV sont des assemblages complexes contenant des matériaux critiques tel que l'argent et des polluants persistants comme les polymères fluorés. De plus, le verre et le silicium mis en œuvre présentent une empreinte carbone élevée, rendant le réemploi essentiel pour atténuer l'impact environnemental. Diverses techniques de démantèlement sont explorées pour extraire les métaux, les polymères et le verre. Les objectifs concernent la sélectivité et le rendement des procédés, la pureté des matériaux obtenus. Pour renforcer la durabilité du photovoltaïque, la gestion des modules dans une vision d'économie circulaire est essentielle.
Le CEA/LITEN mène des recherches sur les méthodes de délamination pour améliorer la qualité des matériaux recyclés. Dans ce postdoctorat, nous explorerons la capacité des ultrasons pour le démantèlement ou la réparation des modules PV. Le développement d'un modèle numérique pour comprendre les phénomènes de vibration dans les panneaux PV permettra la conception d'un outil pour un couplage efficace. En plus de la modélisation et de la mise en place de l'outil, nous explorerons de nouvelles architectures de modules PV en intégrant des couches composites sensibles aux ultrasons. L'évaluation de divers phénomènes induits tels que la transmission optique et le comportement thermomécanique fera partie de l'étude. Ce projet tirera parti d'un environnement scientifique de haut niveau, avec une expertise en modélisation numérique thermomécanique, en conception de modules PV et en fabrication de prototypes.
Étude de la formulation Vitesse-Vorticité-Pression pour discrétiser les équations de Navier-Stokes.
Les équations de Navier-Stokes incompressibles sont parmi les modèles les plus
utilisés pour décrire les écoulements d’un fluide newtonien (c’est-à-dire un fluide dont la viscosité est indépendante des forces extérieures appliquée au fluide). Ces équations modélisent le champ de vitesse et le champ de pression du fluide. La première des deux équations n’est autre que la loi de Newton, tandis que la seconde découle de la conservation de la masse dans le cas d’un fluide incompressible (la divergence de la vitesse est nulle). L’approximation numérique de ces équations est un véritable défi en raison de leur caractère tridimensionnel et instationnaire, de la contrainte de divergence nulle et enfin de la non-linéarité du terme de convection. Il existe différentes méthodes de discrétisation, mais pour la plupart de ces méthodes, l’équation de conservation de la masse n’est pas satisfaite exactement. Une alternative consiste alors à introduire comme inconnue supplémentaire la vorticité du fluide, égale au rotationel de la vitesse. On réécrit alors les équations de Navier-Stokes avec trois équations. Le post-doc consiste à étudier d'un point de vue théorique et numérique cette formulation et de proposer un algorithme de résolution efficace, dans le code TrioCFD.
Développement d'une nouvelle génération d'adhésifs polymères réversibles
Les adhésifs polymères sont des systèmes généralement réticulés utilisés pour lier deux substrats durant toute la durée de vie d’un assemblage pouvant être multimatériau et ce pour de multiples applications. En fin de vie, la présence d’adhésifs rend difficile la séparation des matériaux ainsi que leur recyclage, du fait de la difficulté de détruire la réticulation de l’adhésif sans traitement chimique ou thermique agressif également pour les substrats liés.
Dans ce cadre, le CEA développe des adhésifs à recyclabilité augmentée, et ce via l’intégration de la recyclabilité dans les structures chimiques dès la synthèse des réseaux polymères. Une première approche consiste à intégrer à des réseaux polymères des liaisons dynamiques covalentes, échangeables sous stimulus généralement thermique (par exemple des vitrimères). Une seconde consiste à synthétiser des polymères dépolymérisables sous un stimulus spécifique (polymères auto-immolables) ayant la capacité de réticuler.
Dans ce contexte, le.a post-doctorant.e développera 2 réseaux utilisables en tant qu’adhésif à recyclabilité augmentée. Un premier réseau se basera sur une chimie dépolymérisable sous stimulus déjà développée sur des chaines linéaires de polymère, devant être transposée à un réseau. D’autre part, un second réseau vitrimère sera synthétisé sur la base de travaux précédents au CEA. L’activation de l’échange de liaisons dans ce réseau se fera via un catalyseur dit photolatent, activable par UV et permettant d’obtenir un adhésif à stimulus UV et thermique. Le choix, la synthèse de ces catalyseurs et leurs impacts sur l’adhésif seront l’objet de l’étude réalisée. Les catalyseurs obtenus pourront également être utilisés comme déclencheurs de la dépolymérisation du premier système dépolymérisable sous stimulus.