Modélisation et Contrôle de la Fréquence et de la Tension dans des architectures GALS en présence de variabilité du process et de variations de tension et de température
L’évolution des technologies sub-microniques a induit des défis majeurs auxquels doit faire face le concepteur, à savoir, la gestion de la variabilité au sein de la puce (ou inter-puces) et la réduction de la consommation. Ces deux défis peuvent être traités par des techniques de "DVFS" (Dynamic Voltage and Frequency Scaling) : la puce est découpée en plusieurs zones de tension-fréquence à réguler compte tenu de références fixées par un superviseur qui prend en compte les contraintes de l’application et les capacités de la plateforme matérielle.
L’objectif de ce travail de post-doctorat est de revisiter les approches DVFS. Dans un premier temps, on effectuera une modélisation physique fine du système à réguler. On proposera ensuite des lois de contrôle non-linéaire qui prennent en compte les saturations des actionneurs, compte tenu d’un cahier des charges donné par des concepteurs de circuit. Les lois de contrôle devront tenir compte des contraintes d’implémentation sur une plateforme. Les performances de ces lois en asservissement et en régulation seront évaluées sur simulateur.
Le problème d’asservissement et régulation de la tension et de la fréquence est en fait intrinsèquement Multi-Entrées-Multi-Sorties (MIMO). On exploitera donc des techniques de contrôle MIMO pour répondre au cahier des charges fixé par les concepteurs de circuit.
Enfin, le contrôle de différentes zones VF est généralement piloté par un unique organe de décision. On réfléchira à des méthodologie de contrôle distribué qui prennent en compte par exemple l’état des zones voisines à la zones VF contrôlée.
Réseaux d’antennes intégrées pour communications haut-débit à 60 GHz
Ce post-doctorat s’inscrit dans le cadre de nos travaux sur la conception d’antennes pour les systèmes de communications haut-débit dans la bande de fréquence 57-66 GHz. La réalisation d’objets communicants dans cette gamme de fréquence par des technologies à haut niveau d’intégration et faible coût est un défi aujourd’hui accessible avec les nouvelles générations de filières microélectroniques CMOS et les différentes technologies d’assemblage et packaging de circuits intégrés avec des applications clairement identifiées. Après une série de projets menés ces dernières années sur des antennes simples réalisées et validées sur différentes technologies, les travaux prévus s’orientent fortement vers la conception et démonstration de réseaux d’antennes à dépointage électronique pour des applications longue portée. Plusieurs démonstrateurs de réseaux d’antennes seront conçus en collaboration avec nos partenaires travaillant sur la conception de circuits intégrés et sur les technologies de fabrication et d’assemblage dans le but d’aboutir à un système entièrement fonctionnel.
Méta-matériaux : conception d’une surface haute impédance intégrée à 60GHz, transposition de fréquences et potentialités à 60THz
Cape d’invisibilité, imagerie sub-longueur d’onde, substrat d’antennes fins, absorbants, etc., les structures de type méta-matériaux laissent entrevoir des applications pour certaines futuristes mais aussi bien actuelles pour d’autres, notamment si l’on considère les avancées récentes dans les domaines des matériaux, des microtechnologies et le l’optique intégrée.
Ce post-doctorat a pour objectif l’étude de structures de type surface haute impédance et de leur transposition dans des bandes de fréquences très différentes (6 GHz, 60 GHz, 60 THz) correspondant à des technologies et applications très variées.
Outre une étude bibliographique approfondie de l’état de l’art, l’étude comprendra des travaux de conception aux trois bandes de fréquence citées et une démonstration expérimentale à 6 GHz et si possible 60 GHz grâce à la réalisation de prototypes.
Monitoring global pour éoliennes offshore par méthodes de mesure bas coût et à déploiement simplifié
Ce projet fait suite à des travaux antérieurs focalisés sur l’instrumentation d’une éolienne on-shore avec un réseau de capteurs inertiel dont les réponses permettent la détection de modes de vibration propres à l’éolienne, en particulier du mat ainsi que le suivi en temps réel de ces réponses.
Les objectifs de ce projet sont multiples : porter ces travaux sur des éoliennes offshore; rechercher les signatures dans des bandes de fréquences plus larges; étudier la réponse des bases offshore et de leurs ancrages.
L’un des enjeux est notamment de parvenir à retrouver les signatures des éléments tournants (pales) sans instrumentation directe. Instrumenter ces éléments est en effet plus coûteux et plus impactant sur la structure.
En outre la technologie de capteurs sera adaptée au suivi du cycle de vie en fatigue des structures filaires en mouvement (câble de raccordement électrique dynamique et ancrage) dans le cas d’une éolienne off-shore. L’objectif final vise à proposer une méthode globale de suivi de la santé d’une éolienne off-shore.
Dimensionnement et optimisation du pilotage d’une chaine de production hydrogène couplée à un parc éolien offshore
Le couplage entre les filières EMR (Energies Marines Renouvelables) et hydrogène fait apparaître des atouts potentiels importants à long terme. Le projet MHyWind propose d’évaluer le potentiel énergétique et économique d’une chaine de production hydrogène intégrée à une sous-station d’un parc éolien offshore. L’hydrogène produit et stocké localement sera distribué par bateau pour des usages portuaires, en remplacement d’énergies fossiles. Pour cela, il sera mise en place une simulation qui intègrera toute la chaine énergétique du parc éolien vers les usages portuaires de l’hydrogène. Elle permettra d’évaluer différentes configurations et dimensionnements en fonction des usages locaux, leviers de valorisation, et modes de pilotage et fonctionnement du système. Les critères seront le productible (kg d’H2 produits / consommés) et les coûts de la chaine complète (CAPEX et OPEX). Dans le cadre du post_doctorat, l’objectif sera la mise en place de l’outil sur ce cadre applicatif pleinement intégré au projet en partenariat avec les équipes des laboratoires concernés.
Etude numérique basée sur la meta-modélisation de la propagation d’ondes ultrasonores dans des tuyauteries comportant des zones de corrosion
Le projet ANR PYRAMID (http://www.agence-nationale-recherche.fr/Projet-ANR-17-CE08-0046), a pour objectif de développer des techniques permettant de détecter et quantifier l’amincissement de paroi dû à la corrosion induite par un flux chargé en débris dans les systèmes de tuyauterie. Dans le cadre de ce projet qui implique des équipes Françaises et Japonaises, le CEA LIST développe des outils de simulation basés sur une approche éléments finis et dédiés à la modélisation de la diffraction d’ondes guidées ultrasonores par une zone de corrosion dans une canalisation coudée. Mises à disposition des partenaires, ces solutions supporteront la conception d’un procédé d’inspection par Transduction ElectroMagnétique-Acoustique (EMAT) au laboratoire vibrations-acoustique (LVA) de l’INSA Lyon. Pour cela, un atout différentiant reposera sur la capacité du CEA LIST à adapter des outils de méta-modélisation a ses modèles physiques pour autoriser une exploitation intensive de la simulation.
Post-doc : réseau de neurones CNN - gestion des incertitudes dans la base de données d'apprentissage
L'objectif de ce postdoc est de développer un algorithme pour prendre en compte les incertitudes des données de la base d'apprentissage d'un réseau de neurones. Ce travail s'inscrit dans le contexte d'un projet d'estimation dynamique de l'état d'un procédé d'extraction liquide-liquide. En utilisant un simulateur qualifié du procédé et des mesures de suivi lors de son exploitation, il est possible d'estimer les paramètres opératoires et connaitre ainsi l'état du procédé. Cependant ces mesures sont entachées d'incertitudes et il est nécessaire de réconcilier les données pour obtenir le meilleur jeu de données à fournir au simulateur. Un réseau de neurone convolutifs (CNN) permettant d'inverser le simulateur est en développement (à partir des sorties mesurées, on peut être capable d'estimer les entrées à fournir au simulateur). L'objectif est d'évaluer l'impact des incertitudes de mesure sur la construction de ce réseau de neurones. La première étape sera de propager les incertitudes des mesures d'entrée à travers le simulateur à l'aide de la plateforme Uranie, développée par le CEA ISAS. Cette connaissance sera alors intégrée dans la boucle d'apprentissage du réseau de neurones. L'impact de ces incertitudes sur les résultats du réseau de neurones doit être évalué pour fiabiliser l'estimation de l'état du procédé par le réseau de neurones. A travers ce projet, nous sommes au cœur de la thématique du contrôle de procédés complexes par la simulation.
Conception d’un hyperviseur sûr et sécurisé dans le contexte d’une architecture manycore
Le projet TSUNAMY a pour objectif de re-penser la conception des futures puces manycore selon une approche collaborative matériel/logiciel. Il visera notamment l’intégration de crypto-processeurs dans une telle puce, qui devient du même coup une architecture hétérogène dans laquelle l’ordonnancement, l’allocation, le partage et l’isolation des ressources seront des problématiques majeures.
Le laboratoire LaSTRE a conçu Anaxagoros, un micro-noyau qui assure de bonnes propriétés en termes de sécurité et d’intégration d’applications à criticités mixtes et se prête donc bien à la virtualisation de systèmes d’exploitation. Faire évoluer cette couche de virtualisation dans le cadre du projet TSUNAMY est le principal but de ce sujet de post-doctorat.
Le premier problème à traiter tient au passage d’Anaxagoros à l’échelle des manycores. Ce système a été développé pour s’adapter aux multi-coeurs : des techniques innovantes pour minimiser le nombre de points de synchronisation ont été proposées pour atteindre un haut niveau de parallélisme en mode "lock-free". C’est une première étape, mais le passage aux manycores apporte d’autres problématiques comme la cohérence des caches ou un accès non uniforme à la mémoire, qui nécessitent de se concentrer sur la localité des données. Le second problème sera d’incorporer dans Anaxagoros de véritables capacités de sécurité, notamment dans la protection contre les canaux cachés ou pour la confidentialité. Le troisième et dernier problème qui sera traité par des interactions avec les partenaires du projet sera de déterminer des techniques qui pourront être implémentées directement au niveau matériel pour empêcher que même une faille dans du logiciel habituellement considéré comme sûr ne permettra pas à un attaquant d’obtenir un accès à des données privées ou des fuites d’information.
Gestion Système Multi-Agent optimale des réseaux de chaleur intégrant du stockage thermique
Le travail proposé vise à contribuer au développement des premières briques d’une plate-forme logicielle basée sur les environnements Modelica/JADE (java) permettant de modéliser, simuler et optimiser le pilotage des réseaux de chaleur grâce à l’utilisation de modèles de stockages thermiques compatibles: spécifier les interfaces des données nécessaires et suffisantes pour le contrôle des stocks du réseau, implémenter les éléments contrôlés dans le réseau de chaleur, de définir des modèles simplifiés des principaux composants du réseau de chaleur à intégrer dans les agents(production, distribution/stockage, consommation), et de concevoir des modèles prédictifs de consommation et de production afin de pouvoir anticiper l’évolution du système. L’évaluation des performances se fera sur le cas test construit dans l’environnement de simulation Modelica.
Elaboration et caractérisation de matériaux composites SiCf/SiC à conductivité thermique améliorée
Les matériaux composites SiCf/SiC à matrice céramique sont actuellement envisagés comme matériaux de structure et de gainage des réacteurs nucléaires à neutrons rapides de 4ième génération. Cependant, leur utilisation pourrait être limitée du fait de leur trop faible conductivité thermique en conditions de fonctionnement (< 10 W/mK).
Les composites SiCf/SiC sont aujourd’hui élaborés par un procédé d’infiltration en phase gazeuse (CVI). Afin d’améliorer leur conductivité thermique (réduction de la porosité), il est envisagé de développer un procédé d’élaboration hybride combinant le procédé CVI et un procédé céramique en voie liquide.
L’objectif de cette étude est de déterminer les conditions d’élaboration de la matrice SiC par un procédé en voie liquide, puis de qualifier le comportement des matériaux hybrides aux plans mécaniques et thermiques, notamment par rapport à celui d’un matériau CVI de référence.