Etudes numériques de l’interaction laser plasma en champ intermédiaire sur le Laser Megajoule
Dans les expériences de Fusion par Confinement Inertiel (FCI), des faisceaux lasers intenses traversent une cavité remplie de gaz qui est rapidement ionisé. Ils se propagent dans le plasma ainsi formé et sont soumis à des instabilités néfastes pour réaliser la fusion. Les techniques de lissage optique consistent à briser les cohérences spatiales et temporelles des faisceaux lasers afin que leurs tailles et temps caractéristiques soient plus petits que ceux requis pour le développement des instabilités. La brisure de la cohérence spatiale est réalisée par une lame de phase qui va répartir l’énergie laser en une multitude de grains de lumière appelés points chauds. La brisure de cohérence temporelle s’effectue en élargissant le spectre grâce à un modulateur de phase et en dispersant chaque fréquence grâce à un réseau. La connaissance des caractéristiques des points chauds (largeur, longueur, contraste, temps de cohérence, vitesses …) est importante pour prédire le niveau des instabilités qui peut évoluer en fonction du temps et au cours de la propagation des faisceaux.
Par souci de simplicité, les instabilités se développant lors de l’interaction laser-plasma sont souvent étudiées autour du point de focalisation des faisceaux lasers. Or dans les expériences de FCI, les faisceaux sont focalisés près du trou d’entrée laser de la cavité qui a une longueur d’environ 1 cm. Des instabilités peuvent donc se produire à la fois en amont du meilleur foyer (à l'extérieur de la cavité) et aussi et surtout en aval de celui-ci (assez loin à l’intérieur de la cavité). Le but de ce contrat post-doctoral est d’étudier le développement des instabilités lorsqu’il se produit en champ intermédiaire (loin du meilleur foyer du faisceau laser). Nous nous concentrerons sur les instabilités de propagation (autofocalisation, diffuson Brillouin vers l’avant) et sur la rétrodiffusion Brillouin. Le travail sera réalisé grâce à des outils de diagnostics et des codes numériques existants.
Convection naturelle à haut Rayleigh pour la Securité des réacteurs: 2ème année
Le postdoc est associé à la deuxième année du projet CORAYSE. La sécurité des réacteurs de type SMR est basée sur des systèmes passifs : le réacteur est placé dans une piscine où la chaleur résiduelle est évacuée par convection naturelle en cas d’accident. Toutefois à ce jour on n’appréhende pas, ni par le calcul ni sur la base d’expériences, l’échange thermique entre le réacteur et l’eau, car la convection naturelle n’a fait l’objet de corrélations d’échange thermique que jusqu’à des nombres de Rayleigh Ra de 10^12 (le nombre de Rayleigh Ra décrit le rapport entre le transport par convection naturelle et le transport diffusif). Pour un SMR, ce Ra peut dépasser 10^16. La maitrise par des calculs numériques et des expériences est donc un enjeu majeur de sécurité. Un tel objectif nécessite toutefois que plusieurs défis soient relevés :
• Un défi numérique : la capacité du code à modéliser de manière suffisamment précise et dans un temps raisonnable des écoulements turbulents à très haut nombre de Rayleigh est encore du domaine de la recherche. La simulation numérique aux plus hauts Ra envisagés représente un défi en termes de temps calcul, nécessitant des simulations sur des calculateurs « exascale ». Une adaptation des codes existants à cette situation est donc indispensable.
• Un défi expérimental : au niveau de la validation du code, la réalisation d’une expérience représentative, dans laquelle un nombre de Rayleigh supérieur à 10^16 puisse être atteint, nécessite une expérience à l’échelle 1 (donc très onéreuse), ou bien une expérience avec un autre fluide – par exemple l’hélium liquide - dont les propriétés physiques (viscosité, dilatation thermique,…) permettront d’atteindre en laboratoire des Rayleigh comparables.
Construction d'un modèle numérique à l'échelle mésoscopique de pièces composites macroscopiques
La modélisation des matériaux composites à renfort fibreux à fibres continues (préforme) peut être réalisée à l’échelle mésoscopique par éléments finis en maillant la préforme tissée ainsi que la matrice. La géométrie de ces constituants peut être générée à partir d’une géométrie idéale ou issue d’imagerie par tomographie X (jumeau numérique). Une limite reste cependant le volume de matériau pouvant être représenté. Si le calcul classique par éléments finis est envisageable pour le matériau moyen, au point courant, les singularités géométriques (renfort, liaison, etc.) sont difficiles à prendre en compte (nombre de mailles important). Il est alors nécessaire de recourir à un calcul multi-échelle méso-macro. De récents développements en calcul par éléments finis montrent que la résolution du problème posé par le calcul sur modèle numérique d’une structure macroscopique décrite à l’échelle méso est possible en découpant ce calcul macros en une série de calculs mésos ("décomposition en sous-domaines"). Il faut alors disposer d’une description numérique macroscopique du composite, y compris dans les zones de singularités. L’objectif du stage post-doctoral proposé est de construire un outil logiciel permettant de reproduire une architecture composite (renfort à fibres continues) d’une pièce de forme donnée. Une attention particulière sera portée aux géométries de renfort possibles (tissés, rapportés, ...). Le choix des outils utilisés (mailleur, langage, …) sera étudié au début du stage.
Simulation d'un milieu poreux soumis à des impacts à haute vitesse
La maîtrise de la réponse dynamique de matériaux complexes (mousse, céramique, métal, composite) suite à des sollicitations intenses (dépôt d’énergie, impact hyper-véloce) est un enjeu majeur pour de nombreuses applications développées et conduites par la Direction des Applications Militaires (DAM) du Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA). Dans cette optique, le CEA CESTA développe des modélisations mathématiques du comportement de matériaux face à des impacts hypervéloces. Ainsi, dans le cadre de l’ANR ASTRID SNIP (Simulation Numérique des Impacts dans les milieux poreux) en collaboration avec l’IUSTI (Université Aix-Marseille), des études sur le thème de la modélisation des matériaux poreux sont menées. Elles ont pour objectif d’aboutir à l’élaboration de modèles innovants plus robustes et palliant les déficits théoriques des méthodes existantes (consistance thermodynamique, préservation du principe d’entropie) Dans le cadre de ce post-doc, le candidat devra effectuer, dans un premier temps, une revue bibliographique pour comprendre les méthodes et modèles développés au sein de l’IUSTI et du CEA CESTA et comprendre leurs différences. Dans un second temps, il étudiera la compatibilité entre le modèle développé à l’IUSTI et les méthodes de résolution numériques utilisées dans le code de calcul de dynamique rapide du CEA CESTA. Il proposera des adaptations et des améliorations de ce modèle pour prendre en compte l’ensemble des phénomènes physiques que l’on souhaite capturer (plasticité, contraintes de cisaillement, présence d’inclusions fluides, endommagement) et rendre son intégration dans le code de calcul possible. Après une phase de développement, la validation de l’ensemble de ces travaux sera effectuée via des comparaisons avec les modèles physico-numériques existants ainsi que la confrontation avec les résultats expérimentaux d’impacts issus de la littérature et/ou effectués au CEA/DAM.
Conception de Matrice 2D pour Calcul Quantique sur Silicium avec Validation par Simulation
L'objectif est de concevoir une structure matricées 2D pour le calcul quantique sur silicium afin d'envisager des structures de plusieurs centaines de Qubits physique.
En particulier le sujet sera focalisé sur :
- La fonctionnalité de la structure (interaction coulombienne, RF et quantique)
- Les contraintes de fabrication (simulation et contrainte de procédé réaliste)
- La variabilité des composants (Prise en compte de paramètre de variabilité et défectivité réaliste)
- Les contraintes induites sur les algorithmes (code de correction d'erreur)
- Scalabilité de la structure vers des milliers de Qubit physiques
Le candidat travaillera au sein d'un projet de plus de cinquante personnes avec des expertises couvrant la conception, la fabrication, la caractérisation et la modélisation des qubits de spin ainsi que des disciplines connexes (cryoélectronique, algorithmes quantiques, correction d'erreurs quantiques, …)
Modélisation CFD des mouvements de gaz en cavités salines
Storengy, société du groupe Engie, est l’un des leaders mondiaux en matière de stockage souterrain de gaz. Storengy opère en particulier des cavités salines de stockage de gaz naturel. Les cavités sont localisées dans des couches de sel gemme à environ 1km de profondeur ; elles ont un volume de plusieurs centaines de milliers de m3. Ces stockages souterrains assurent une réponse rapide aux pics de consommation de gaz et également à la modulation saisonnière de la demande. Ils contribuent aussi à la sécurité de la fourniture d’énergie en permettant de faire face aux défaillances temporaires de sources d’approvisionnement de gaz naturel.
Storengy SAS s’est tourné, courant 2019, vers le CEA pour avoir un appui sur ces aspects. Une étude intitulée « Modélisation du stockage de gaz (CH4 et H2) en cavités salines avec TrioCFD » s’est déroulée en 2020. Des premiers calculs pour des cavités parallélépipédiques (géométrie simplifiée) en VDF (différences finies) monophasique en régime incompressible et quasi-compressible ont été menés. Ceux-ci ont mis en évidence que le modèle quasi-compressible implémenté dans TrioCFD ne permettait pas de prendre en compte les effets de la stratification du gaz en cavité. Un nouveau modèle « weakly-compressible » a été développé afin de rendre compte de la spécificité des écoulements en cavité.
L'objectif est de poursuivre ces travaux et de développer une modélisation thermo-hydraulique sur la base du modèle TrioCFD du stockage d’hydrogène en cavité dans des cavités de forme réaliste et en tenant des conditions d’opération des cavités (phases d’injection et de soutirage). Les simulations seront, dans un premier temps, réalisées
en gaz sec en tenant compte des échanges thermiques avec le massif, puis de en prenant en compte des échanges de masse avec la saumure.
Traitement SLAM pour la navigation aidée par le terrain (Simultaneous Localization and Mapping)
Le post-doctorat se situe dans le contexte d’essais en vol d’un véhicule instrumenté (navette spatiale, capsule ou sonde) qui rentre dans l'atmosphère. Il s’agit de reconstruire, à partir de mesures (centrale inertielle, radar, ballon météorologique, etc.), la trajectoire et diverses quantités d'intérêt, afin de mieux comprendre les phénomènes physiques et de valider les modèles prédictifs. On s’est orienté vers des statistiques bayésiennes, associées à des méthodes par chaînes de Markov Monte Carlo (MCMC). Le post-doctorant aura pour mission de développer et d’étendre l'approche proposée, dans le cadre d'une collaboration scientifique avec Audrey Giremus, professeur à l’Université de Bordeaux et spécialiste du domaine. On cherchera en particulier à accroitre les performances d’échantillonnage en grande dimension. Une attention particulière sera portée à la problématique d'apprentissage automatique constituée par l'exploitation d'une base de données aérologiques. L'objectif final sera d'aboutir à un prototype évolutif qui, dédié à l'analyse post-vol des essais en vol, exploite les différentes sources d'information et les incertitudes associées. Les évaluations porteront sur des données simulées et réelles, avec comparaison à des outils existants. On s'efforcera de valoriser le travail par des communications et publications scientifiques.
Effet de la présence de TSV sur la fiabilité des interconnexions dans le cadre des capteurs photographiques 3 couches
Parce que la réduction des dimensions basée sur la loi empirique de Moore a atteint ses limites, une technologie d'intégration alternative, telle que l'intégration tridimensionnelle (3DI) devient le courant dominant pour de plus en plus d'applications telles que les capteurs d'image CMOS (CIS), les mémoires... La 3ème génération de CIS empile jusqu'à 3 puces interconnectées par une liaison hybride (hybrid bonding) et des vias traversant le silicium - haute densité (TSV-HD). Le bon fonctionnement et l'intégrité des dispositifs et des circuits doivent être maintenus dans une telle intégration, en particulier dans le voisinage proche des TSVs. Le budget thermique, la dilatation du cuivre (Cu pumping/protrusion), le gauchissement des plaquettes de silicium minces peuvent entraîner des problèmes de rendement électrique et de fiabilité et doivent être, en conséquence, étudiés.
Le travail consiste à évaluer l'impact du TSV sur les performances et la fiabilité (électromigration, claquage diélectrique, BTI...) des interconnexions (BEOL) et des composants actifs (FEOL). Les données acquises permettront de définir des règles de conception et en particulier une zone interdite/d'exclusion potentielle (KOZ) et de calibrer un modèle éléments finis.
Développement et application des méthodes de quantification inverse d'incertitudes pour la thermohydraulique dans le cadre du projet OECD/NEA ATRIUM
Concernant les méthodologies BEPU (Best Estimate Plus Uncertainty) pour l'analyse de sûreté des centrales nucléaires, l'une des questions cruciales est de quantifier les incertitudes d'entrée associées aux modèles physiques dans le code. Une telle quantification consiste à évaluer la distribution de probabilité des paramètres d'entrée nécessaires à la propagation de l'incertitude par une comparaison entre les simulations et les données expérimentales. Elle est généralement appelée Quantification d'Incertitude Inverse (IUQ).
Dans ce cadre, le Service de Thermohydraulique et Dynamique des Fluides (STMF) du CEA-Saclay a proposé un nouveau projet international au sein du groupe de travail WGAMA de l'OCDE/NEA. Il s'agit d'ATRIUM (Application Tests for Realization of Inverse Uncertainty quantification and validation Methodologies in thermal-hydraulics). Ses principaux objectifs sont de réaliser un benchmark sur des exercices pertinents de quantification de l'incertitude inverse (IUQ), de prouver l'applicabilité de la ligne directrice SAPIUM et de promouvoir les meilleures pratiques pour l'IUQ en thermohydraulique.
Il est proposé de quantifier les incertitudes associées à certains phénomènes physiques pertinents lors d'un accident de perte de réfrigérant (LOCA) dans un réacteur nucléaire. Deux exercices IUQ principaux de complexité croissante sont prévus. Le premier concerne l'écoulement critique à la rupture et le second est lié aux phénomènes de transfert thermique post-CHF. Une attention particulière sera consacrée à l'évaluation de l'adéquation des bases de données expérimentales pour l'extrapolation à l'étude d'un APRP dans un réacteur à échelle réelle. Enfin, les incertitudes du modèle d'entrée obtenues seront propagées sur un test d'effet intégral (IET) approprié pour valider leur application dans des expériences à plus grande échelle et éventuellement justifier l'extrapolation à l'échelle du réacteur.
Modélisation thermo-aéraulique d’un réacteur d’incinération
Le laboratoire des Procédés Thermiques Innovants (LPTI) du CEA Marcoule développe un procédé d’incinération-vitrification In-Can (PIVIC) visant le traitement des déchets mixtes organiques/métalliques générés par les installations de production du combustible MOX. Le programme de développement de ce procédé s’appuie sur des essais réalisés sur prototype échelle 1 mais également sur l’exploitation de l’outil de simulation numérique.
Le modèle thermo-aéraulique du réacteur d’incinération PIVIC, développé sous le logiciel Ansys-Fluent est bâti sur une articulation de modèles élémentaires (plasma, pyrolyse, combustion, transport particulaire).
Le travail proposé consiste à perfectionner le modèle, notamment en ce qui concerne les composantes pyrolyse/combustion : complexification de la chimie réactionnelle, prise en compte du caractère instationnaire du processus… Le niveau de représentativité du modèle thermo-aéraulique sera évalué sur la base d’une étude comparative exploitant des données expérimentales issues d’essais sur prototype. Parallèlement à ces travaux de développement, différentes études paramétriques seront réalisées afin de tester l’impact de certaines modifications de configuration du réacteur.
En plus des aspects de maîtrise et pilotage de l’incinération, un autre enjeu majeur du projet consiste à évaluer le taux d’encrassement radiologique des parois du réacteur lors de l’incinération d’un déchet contaminés en émetteurs alpha. L’évaluation de cet encrassement radiologique du réacteur s’appuiera sur un modèle d’entraînement particulaire (DPM) associé à un modèle d’interaction pariétal. Les résultats de simulation de taux d’encrassement seront confrontés à des données expérimentales issues d’analyses de dépôts collectés sur les parois du réacteur (essais réalisés en inactif avec simulants d’actinides). Ce travail comparatif pourra donner lieu à des modifications du paramétrage du modèle physique.