Analyse de la fiabilité des mémoires résistives (RRAM) pour application haute densité de stockage

Dans ce postdoc, nous proposons d’étudier les mémoires résistives (RRAM) en vue des applications de mémoire haute densité. Dans ce but, deux technologies (CBRAM et OXRAM) seront comparées et caractérisées.
L’impact des procédés d’intégration technologique sur les performances de la mémoire sera abordé. En particulier, nous évaluerons comment les étapes critiques d’intégration peuvent affecter le fonctionnement de la mémoire. Les architectures MESA (la RRAM est gravée) vs Damascène (la RRAM est déposée dans une cavité) seront comparées.
Après l’évaluation du fonctionnement de base de la mémoire (forming, SET, RESET, tensions requises...), un accent particulier sera porté sur la fiabilité. L’endurance sera étudiée en détail et optimisée. L’impact des conditions de programmation (y compris des systèmes de programmation intelligents) sur la fenêtre mémoire et le nombre de cycles en endurance sera analysé. Enfin, la variabilité sera adressée, afin de quantifier les différentes contributions à la fermeture de la fenêtre mémoire : variabilité cycle à cycle et cellule à cellule. Les problèmes de fiabilité spécifiques (bruit de lecture ...) seront également abordés. Des extrapolations sur la densité maximale qu’une technologie de RRAM donnée peut offrir seront tirées.
En se basant sur cette étude détaillée, une comparaison de toutes les technologies RRAM testées sera faite, permettant d’identifier les avantages et inconvénients de chaque option, et de mettre en évidence les compromis nécessaires (vitesse de la mémoire, l’endurance, tensions de fonctionnement, consommation ...).

Planification distribuée optimale de ressources énergétiques. Application aux réseaux de chaleur.

Les réseaux de chaleur en France alimentent plus d’un million de logements et délivrent une quantité de chaleur égale à environ 5% de la chaleur consommée par le secteur résidentiel et tertiaire. De ce fait, ils représentent un potentiel important pour l’introduction massive d’énergies renouvelables et de récupération. Cependant, les réseaux de chaleur sont des systèmes complexes qui doivent gérer un grand nombre de consommateurs et de producteurs d’énergie, répartis dans un environnement géographique étendu et fortement ramifié. Dans le cadre d’une collaboration entre le CEA-LIST et le CEA-LITEN, le projet STRATEGE vise à une gestion dynamique et optimisée des réseaux de chaleur. Nous proposons une approche pluridisciplinaire, qui intègre à la fois la gestion avancée du réseau par les Systèmes Multi-Agents (SMA) et la modélisation multi-physique simplifiée (hydraulique et thermique) du transport et de la valorisation de l’énergie calorifique sur Modelica.
Il s’agit de concevoir des mécanismes de planification et d’optimisation pour l’allocation de ressources de chaleur. Ces mécanismes devront intégrer les descriptions en provenance d’un Système d’Information Géographique et les prédictions de consommation, production et pertes en ligne calculées grâce aux modèles physiques simplifiés. On prendra ainsi en compte plusieurs caractéristiques du réseau : le caractère continu et dynamique de la ressource ; des sources avec des comportements, des capacités et des coûts de production différents ; la dépendance de la consommation/production à des aspects externes (météo, prix de l’énergie) ; les caractéristiques internes du réseau (pertes, capacité de stockage). Les algorithmes développés seront implémentés sur une plateforme de pilotage multi-agent existante et constitueront la brique principale d’un moteur d’aide à la décision pour la gestion des réseaux de chaleur qui devra fonctionner en environnement simulé et dans un deuxième temps en ligne sur un système réel.

Champ électrique en calculs ab initio, application aux RRAM

Depuis plusieurs années, le LETI/DCOS a engagé un effort de simulation ab initio des phénomènes microscopiques à l’origine du fonctionnement des RRAM à base d’oxydes (HfO2, Ta2O5, Al2O3). La prise en compte d’un champ électrique appliqué au système MIM (Metal-Isolant-Métal) est aujourd’hui possible grâce à deux approches par séparation d’orbitales [1] ou par calcul en fonction de Green hors équilibre [2]. Nous proposons un travail de développement et de prise en main de ces méthodes en combinant plusieurs approches de simulation. Le but est d’étudier les mécanismes de dégradation d’un oxyde en suivant le mouvement des atomes oxygènes couplé au champ électrique. Ces mécanismes sont encore largement méconnus et viendront supporter les efforts d’optimisation et de caractérisation des cellules mémoires RRAM actuellement fabriquées et étudiées au LETI. Les outils de simulations visés sont Siesta pour la partie DFT, et TB_Sim pour la partie transport.
[1] S. Kasamatsu et al., « First principle calculation of charged capacitors under open-circuit using the orbital separation approach, PRB 92, 115124 (2015)
[2] M. Brandbyge et al., « Density functional method for nonequilibrium electron transport », PRB 65, 165401 (2002)

Conception et réalisation d’un retour d’effort par sens électrique pour la téléopération de bras sous-marins et aériens

Depuis quelques années, le groupe Robotique Bio-inspirée de l’équipe Robotique de l’IRCCyN développe un mode de perception bio-inspiré de certains poissons des eaux douces tropicales: le sens électrique. De nature active, ce sens est basé sur la perception des distorsions par l’environnement d’un champ électrique produit par le poisson. Basé sur ce principe l’Irccyn a développé, dans le contexte d’un projet Européen nommé Angels, le premier robot autonome sous-marin apte à se déplacer grâce au sens électrique. Dans l’avenir, CEA TECH et l’Irccyn veulent étendre ce premier résultat dans de multiples directions et notamment dans le contexte de la télé-opération des bras manipulateurs sous-marins et aériens avec retour haptique émulé par le sens électrique. Intégré dans le groupe de Robotique Bio-inspiré de l’IRCCYN, le post-doctorant devra contribuer au développement du sens électrique et à son usage pour la téléopération sous-marine et aérienne. Il participera à la conception et au développement de nouveaux capteurs inspirés des poissons électriques et à leur usage pour la robotique sous-marine téléopérée. Les résultats de ses travaux serviront de base au démonstrateur industriel (système de téléopération off-shore) qui doit être développé dans le cadre du projet CEA TECH / IRCCYN Robotique Bio-inspirée.

Eco-innovation de matériaux isolants par IA, pour la conception d'un futur câble à grande longévité, résilient, bio-sourcé et recyclable

Ce sujet s’inscrit dans un projet plus vaste à venir, pour la création, par IA, d’un nouveau câble électrique pour les futures centrales nucléaires, fiable et résilient ayant des capacités d’auto-réparation, notamment vis-à-vis de son vieillissement. L’objectif est de concevoir des câbles dont la durée de vie sera bien plus longue que les câbles existants dans un démarche d’éco-Innovation. Nous nous focalisons sur l’isolant de câble car c’est l’élément le plus critique pour l’application et le plus sensible au vieillissement. La solution actuelle est basée sur l’ajout d’additifs (antirads et antioxydants) dans cet isolant pour limiter les effets de l’irradiation et retarder au maximum son vieillissement. Mais il existe une autre solution qui n’a jamais encore été testée : les matériaux auto-réparant.
Le projet auquel est rattaché le sujet, a pour objectif la conception et la réalisation de plusieurs éprouvettes modèles d’isolant de câble adossé à des protocoles de caractérisation afin de vérifier le gain en terme de fiabilité et de résilience. Les résultats obtenus commenceront à alimenter une base de données de la future IA autour de la plate-forme Expressif, développée au CEA List, qui nous servira à concevoir le futur câble.

Etude des phénomènes physiques entrant en jeu dans le vieillissement des nanofils de silicium utilisées comme jauges de détection piézorésistives pour la réalisation de capteurs MEMS inertiels.

C’est grâce aux récents développements de la microélectronique que des nouvelles générations de capteurs alliant hautes performances, taille réduite et faible coût ont pu voir le jour. Dans ce contexte, le CEA-LETI a proposé un nouveau concept novateur appelé M&NEMS pour la réalisation de capteurs inertiels de type accéléromètres, magnétomètres et gyromètres. Le concept M&Nems combine les technologies MEMS et NEMS de manière à profiter de la grande force d’inertie générée par une masse MEMS et de la forte sensibilité de détection de jauges NEMS piézorésistives. Des démonstrateurs ont d’ores et déjà été réalisés et ont permis de démontrer l’intérêt du concept M&Nems, l’un des principaux challenges qui reste à relever concerne la fiabilité des capteurs reposant sur ce concept et en particulier des nano jauges piézorésistives. Le travail de recherche sera donc essentiellement focalisé sur l’étude des modes de défaillances de ces nano jauges piézorésistives avec identification des phénomènes physiques et mise en place de modèles de défaillance. Pour ce faire, un premier travail préliminaire pourra être axé sur la physique du composant avec une étude de la conduction électrique dans les nano jauges : piézorésistivité, piégeage de charges et relaxation, effet de champ… L’étude pourra se poursuivre ensuite par l’étude des modes de défaillances des nano jauges proprement dites, il s’agira concrètement d’être en mesure de comprendre et modéliser la physique de vieillissement de ces nano jauges. Pour ce faire, il sera possible de s’appuyer sur les connaissances acquises sur la physique de conduction des nano jauges mais aussi de jouer sur les paramètres physiques des nano jauges. Au final, les modèles de vieillissement mis en place devront permettre de proposer et valider des choix technologiques de manière à garantir la durée de vie des nano jauges en fonction des conditions d’utilisation des capteurs.

Etude du refroidissement d’un système électronique compact

Les technologies 3D, qui consistent à empiler en verticale un ou plusieurs composants électroniques, constituent un axe de recherche mondial, tant au niveau architecturale qu’au niveau fabrication. La région grenobloise est au cœur de ces avancées technologiques grâce à des démonstrations de 1ere mondiale qui positionnent le Cea-Léti parmi les leaders dans ces technologies avancées.
L’un des points critiques de ces technologies innovantes est de contrôler la gestion de la thermique dans de tels composants 3D quelle que soit l’application finale visée. Les solutions classiques d’aujourd’hui comme l’ajout d’un ventilateur ne peuvent s’adapter à toutes les contraintes, et peuvent s’avérer d’une efficacité limitée. Les solutions technologiques intégrées sont donc aujourd’hui incontournables et sont envisagées à deux niveaux différents du composant; soit la thermique est gérée directement dans les puces en silicium qui constituent l’empilement en 3D, soit au niveau du packaging du composant ainsi échafaudé. Il peut aussi être envisagé de coupler les deux solutions.
L’objectif de cette étude constitue en 1er lieu à réaliser un état de l’art complet des technologies existantes en vue de les évaluer pour les composants développés au Leti. Cette évaluation reposera sur des simulations thermiques adaptées aux composants et une analyse critique complète basée sur les critères faisabilité technologique, efficacité attendue, consommation éventuelle, et coût aboutira à choisir la solution la plus pertinente.
La seconde partie du travail sera ainsi consacrée à la mise en œuvre de cette solution. En s’appuyant sur des experts de la technologie silicium et du packaging, le candidat aura pour mission de contribuer à la conception du composant (dimensionnement et réalisation) et à sa caractérisation.
Ce poste s’adresse à un chercheur ayant de solides connaissances dans les domaines de la thermique et des composants microélectroniques.

Génération de mouvements réalistes de systèmes anthropomorphes

Le sujet de s’inscrit dans le thème de l’Humain Numérique pour l’industrie manufacturière (plus précisément, pour la conception, la maintenance, la formation des opérateurs, la conception et l’ergonomie du poste de travail,…), la santé (conception des postes opératoire, la réhabilitation,…) ou l’industrie du divertissement (l’animation pour le jeu, le cinéma,…).

Partant des compétences et développements complémentaires de l’équipe Gepetto du LAAS et du CEA LIST, en termes de planification de trajectoires (HPP), de commande dynamique de mouvements des systèmes anthropomorphes, l’objectif du post doc consiste à combiner deux approches, l’une globale, traitant principalement des contraintes et caractéristiques géométriques et quasi-statiques, l’autre locale, traitant de la dynamique et prenant en compte des caractéristiques du mouvement humain (primitives motrices, minimisation de critères de coût, etc…).

Analyse de l'endommagement sur chaîne des optiques de fin de chaine du laser Megajoule (LMJ)

Afin de préparer la montée en puissance du laser Megajoule (LMJ), des campagnes laser sont réalisées sur quelques quadruplet LMJ. Une première campagne s'est tenue en 2021, une seconde s'est tenue en novembre de cette année et d'autres suivront. Il s'agit pour chacune d'elle de tester de manière progressive la capacité du laser à atteindre les points visés grâce aux équipements de dernière génération disponibles et aux modèles physique numériques mis à jour, et dont on désire valider la bonne prédiction. Chaque campagne (une dizaine de tirs lasers) nécessite l'analyse d'une masse importante de données acquises par l'ensemble des diagnostics lasers et par une caméra permettant le suivi tir à tir des optiques de fin de chaine du laser. Ces données acquises sur chaîne sont complétées par des mesures base arrière avant et après campagne. L'objectif est à chaque fois de determiner la résistance sur chaîne des optiques et leur bonne adéquation avec les modèles. L'objectif du post-doctorat est de mener l'analyse d'endommagement sur chaine associée à ces campagnes et celles à venir.

Double report de films minces piézoélectrique pour l’élaboration de dispositifs RF innovants

Ces travaux visent à étudier et développer un nouveau concept de multireport de films minces piézoélectrique pour des applications RF. Le candidat sera en charge du développement de l’ensemble de la filière de réalisation de ces structures multicouche et des composants RF 3D. Pour cela, il devra maitriser les mécanismes physiques intervenant dans la technologie de transfert de film et concevoir l’architecture complète notamment via la simulation des propriétés RF des filtres attendues. Une fois la structure définie et les principes fondamentaux maîtrisés, le candidat devra alors identifier les développements nécessaires en relation avec les experts technologique du Léti, assurer leur mise en place sur la plateforme technologique de réalisation et prendre en charge la réalisation des étapes les plus critiques.
Le développement de cette filière de réalisation devra ainsi permettre la génération de substrats possédant une qualité et des propriétés compatibles avec le cahier des charges des composants. La fonctionnalité des substrats devra alors être démontrée via la réalisation de composants RF pertinents afin de démontrer l’apport de cette nouvelle solution technologique au niveau des applications visées.
Le candidat devra faire preuve d’autonomie, d’initiative et de rigueur scientifique afin de s’approprier l’ensemble de la technologie de réalisation.

Top