Adaptation de l'expérience de Delayed Hydride Cracking (DHC) aux matériaux irradiés

L’objectif de cette étude est de « nucléariser » l’« expérience de DHC » développée dans le cadre de la thèse de Pierrick FRANCOIS (2020-2023), permettant de créer dans des conditions de laboratoire le phénomène de DHC sur des gaines de Zircaloy, afin de déterminer la ténacité de ce matériau en cas de DHC : K_(I_DHC ).
Le terme « nucléariser » désigne le processus d’adaptation de l’expérience pour pouvoir tester des matériaux irradiés dans des enceintes dédiées (appelées cellules blindées), où les matériaux sont testés via des bras télémanipulateurs. Les protocoles décrits dans la thèse de Pierrick François devront donc être adaptés, si possible simplifiés, pour pouvoir être transposés en cellules blindées. Cela nécessitera des échanges approfondis avec les personnes en charge des essais, et l’utilisation des outils de simulation numérique développés dans le cadre de cette même thèse. Le développement de cette procédure en cellule blindée sera utilisé par le post-doctorant afin de qualifier le risque de DHC lors de l’entreposage à sec des assemblages combustible en quantifiant la ténacité en DHC après irradiation du gainage.

Conception et mise en œuvre d’un réseau de neurones pour la simulation thermo-mécanique en fabrication additive

Le procédé WAAM (Wire Arc Additive Manufacturing) est une méthode de fabrication additive métallique permettant de fabriquer des pièces de grandes dimensions avec un taux de dépôt élevé. Cependant, ce procédé engendre des pièces fortement contraintes et déformées, rendant complexe la prédiction de leurs caractéristiques géométriques et mécaniques. La modélisation thermomécanique est essentielle pour prédire ces déformations, mais elle nécessite d'importantes ressources numériques et des temps de calcul élevés. Le projet NEUROWAAM vise à développer un modèle numérique thermomécanique précis et rapide en utilisant des réseaux de neurones pour prédire les phénomènes physiques du procédé WAAM. Un stage en 2025 fournira une base de données via des simulations thermomécaniques avec le logiciel CAST3M. L'objectif du post-doc est de développer une architecture de réseaux de neurones capable d'apprendre la relation entre la configuration de fabrication et les caractéristiques thermomécaniques des pièces. Des essais de fabrication sur la plateforme PRISMA du CEA seront réalisés pour valider le modèle et préparer une boucle de rétroaction. Le Laboratoire de Simulation Interactive du CEA List apportera son expertise en accélération de simulations par réseaux de neurones et en apprentissage actif pour réduire le temps d'entraînement.

Conception d'electro-aimants pour expériences plasmas magnétisés sur l'installation laser LMJ-PETAL

Dans le but d'augmenter les capacités de l'installation LMJ-PETAL notamment dans les domaines de la Fusion par Confinement Inertiel, la génération de sources de rayonnement et l'astrophysique, le CEA, avec le soutien de la région Nouvelle Aquitaine, vient de réaliser l'étude de faisabilité d'un système additionnel permettant la réalisation d'expériences sous champ magnétique intense (qq. 10T). La poursuite du projet en vue d'une intégration sur l'installation fait l'objet d'une collaboration entre plusieurs départements du CEA mais également avec d'autres laboratoires français (LULI, CELIA) ou étrangers (Japon, USA).
Le système de génération de champ magnétique est constitué essentiellement d'une bobine (électro-aimant) consommable positionnée autour de la cible laser et alimentée par un banc d'énergie via une ligne de transmission. La poursuite du projet nécessite un travail approfondi de conception des bobines qui devront posséder les performances requises en termes de champ magnétique généré (intensité, volume magnétisé, homogénéité spatiale et stabilité temporelle) tout en étant adaptées à la fois aux caractéristiques de l'alimentation électrique impulsionnelle de forte puissance (~10µs, qq. 10kA et qq. 10kV) et aux contraintes expérimentales d'une très grande installation laser (intégration en centre chambre d'expérience, alignement, risque débris, sûrété nucléaire...).

Elaboration et caractérisation d'un composite oxyde/oxyde

Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un CMC oxyde/oxyde à matrice faible possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Cette étude se fera en collaboration avec plusieurs laboratoires du CEA Le Ripault

Correction numérique de l’état de santé d’un réseau électrique

Les défauts de câbles sont généralement détectés lorsque la communication est interrompue, ce qui entraîne des coûts et des temps de réparation non négligeables. De plus, l’intégrité des données devient un enjeu majeur en raison des menaces d’attaques et d’intrusions accrues sur les réseaux électriques, qui peuvent perturber la communication. Pouvoir distinguer une perturbation due à la dégradation de la couche physique d’un réseau électrique ou à une attaque en cours sur le réseau énergétique, permettra de guider la prise de décision concernant les opérations de correction, notamment la reconfiguration du réseau et la maintenance prédictive, afin de garantir la résilience du réseau. Le sujet propose d’étudier la relation entre les défauts naissants sur les câbles et leur impact sur l’intégrité des données dans le cadre d’une communication par lignes électriques ou PLC (Power Line Communication). Les travaux se baseront sur le déploiement d’une instrumentation utilisant la réflectométrie électrique, combinant des capteurs distribués et des algorithmes d’IA pour le diagnostic en ligne des défauts naissants sur les réseaux électriques. En présence de certains défauts, des méthodes avancées d’IA seront appliquées afin de corriger numériquement l’état de santé de la couche physique du réseau électrique et garantir ainsi sa fiabilité.

Développements de systèmes optoélectroniques pour les technologies de capteurs quantiques

Le Laboratoire Autonomie et Intégration de Capteurs (LAIC) du CEA LETI a pour principales missions le développement de systèmes de capteurs, et en particulier de capteurs quantiques pour des applications de mesures hautes précisions de champs magnétiques. Les activités de l’équipe sont à l’interface du hardware (électronique, optronique, semi-conducteurs), du software (intelligence artificielle, traitement du signal) et du Système (architecture électronique, mécatronique, modélisations multiphysiques). Le projet Swarm (https://swarm.cnes.fr/fr/) qui a permis de mettre en orbite en 2013 nos capteurs quantiques pour la mesure du champ magnétique terrestre fait partie de nos track records, et un nouveau programme aux objectifs similaires démarre cette année.

Les technologies quantiques sont stratégiques pour le développement de capteurs aux performances inégalées, comme nous avons pu le démontrer en magnétométrie. Notre enjeu est aujourd’hui d’adapter ces développements et ce savoir-faire à de nouvelles physiques.
Afin d'accompagner nos développements autour des capteurs quantiques, nous recherchons un post-doc en opto-électronique pour concevoir de nouveaux capteurs quantiques et développer les bancs optiques associés. Ce post-doc comportera une composante expérimentale significative.

Votre mission principale sera de participer au développement de ces nouveaux capteurs et des bancs de caractérisation associés en interface avec les experts CEA du domaine.

Plus particulièrement votre mission s’articulera autour des actions suivantes :
• Conception et assemblage des capteurs quantiques (fibres optiques, sources RF, photodétecteurs)
• Participation à la modélisation des phénomènes physiques en jeu
• Conception et réalisation du banc de caractérisation optique
• Mise en place de l'électronique de pilotage des capteurs quantiques
• Publication des résultats dans des revues scientifiques
• Présentation des travaux dans des conférences internationales

Méthodes de reconstruction avancées pour la cryo-tomographie électronique appliquée à des échantillons biologiques

La Cryo-tomographie électronique (CET) est une technique puissante pour l'analyse structurelle en 3D d'échantillons biologiques dans leur état quasi naturel. Au cours de la dernière décennie, CET a connu des avancées remarquables en matière d'instrumentation, mais la rétroprojection filtrée (FBP) reste la méthode de reconstruction standard pour CET. En raison des dommages causés par les radiations et de la plage d'inclinaison limitée du microscope, les reconstructions FBP souffrent d'un faible contraste et d'artefacts d'élongation, connus sous le nom d'artefacts de « missing wedge » (MW). Récemment, les approches itératives ont suscité un regain d'intérêt pour améliorer la qualité et donc l'interprétabilité des reconstructions CET.
Dans ce projet, nous proposons d'aller au-delà de l'état de l'art en matière de CET en (1) appliquant des algorithmes de compresse sensing (CS) basés sur les curvelets et les shearlets, et (2) en explorant des approches d'apprentissage profond (DL) dans le but de débruiter et corriger les artefacts liés au MW. Ces approches ont le potentiel d'améliorer la résolution des reconstructions TEC et donc de faciliter les tâches de segmentation.
Le candidat réalisera une étude comparative des algorithmes itératifs utilisés dans les sciences de la vie et des approches CS et DL optimisées dans ce projet pour les structures curvilignes et les contours.

Exploration de solutions microfluidiques dans la fabrication de cibles pour la production d’énergie par fusion

Dans le cadre d’un appel à projet sur les « réacteurs nucléaires innovants », le projet TARANIS consiste à étudier la possibilité de production d’énergie par une centrale à fusion par confinement inertiel initiée par lasers de puissance. Le contexte actuel incitant le développement des énergies décarbonnées et les expériences de fusion conduites par les équipes américaines du NIF rendent très favorable la conduite de recherches de haut niveau visant à produire à terme une source d’énergie économiquement intéressante basée sur la fusion inertielle.
Parmi les nombreux verrous techniques à surmonter, la production de cibles de fusion avec un schéma réactionnel adapté et compatible avec la production d’énergie est un enjeu majeur. Le CEA dispose d’un savoir-faire permettant de produire des lots de capsules contenant les éléments fusibles de la réaction. Toutefois le procédé actuel n’est pas adapté à une production de masse de centaines de milliers de capsules par jour à un coût acceptable.
L’une des voies à fort potentiel repose sur l’usage de dispositifs microfluidiques, pour lesquels le Laboratoire des Systèmes Microfluidique et Bioingénierie (LSMB) du Département Technologies et Innovation pour la Santé (DTIS) de la DRT du CEA dispose d’une expertise reconnue.

Modélisation du comportement en corrosion des aciers inoxydables en milieu acide nitrique avec la température

La maîtrise du vieillissement des matériaux des équipements (principalement en acier inoxydable) de l'usine de recyclage du combustible nucléaire usé, fait l'objet d'une attention permanente notamment dans le cadre de la pérennisation de son activité (enjeu industriel majeur). Cette maîtrise passe par une meilleure compréhension des phénomènes de corrosion des aciers par l'acide nitrique (agent oxydant mis en jeu lors des étapes de recyclage), et in-fine par leur modélisation.
Les matériaux d’intérêt sont les aciers inoxydables austénitiques Cr-Ni, à très basse teneur en carbone. Une étude récente sur acier inoxydable riche en Si, qui a été développé dans le but d'améliorer la tenue en corrosion de ces aciers vis-à-vis de milieux très oxydants comme ceux rencontrés en certains endroits de l’usine [1, 2] ; a montré que la corrosion de cet acier était thermiquement activée entre 40 °C et 142 °C avec un comportement différent en-dessous et au-dessus de la température d’ébullition (107 °C) de la solution [3]. En effet, entre 40 °C et 107 °C, l’énergie d’activation est de 77 kJ/mol et au-dessus de l’ébullition, elle est beaucoup plus faible et vaut 20 kJ/mol. Cette différence peut être due à une barrière énergétique plus faible ou à une étape cinétiquement limitante différente.
L’enjeu de ce sujet post doctoral est de disposer d’un modèle de corrosion prédictif en fonction de la température (en deçà et au-delà de l’ébullition). Dans cet objectif, il sera important d’analyser et d’identifier les espèces impliquées dans le processus de corrosion (phase liquide et gaz) en fonction de la température mais aussi de caractériser les régimes d’ébullition. Ce modèle pourra expliquer la différence d’énergies d’activation de cet acier riche en Si en-dessous et au-dessus de la température d’ébullition d’une solution d’acide nitrique concentrée mais aussi permettra d’optimiser les procédés de l’usine où la température et/ou le flux thermique ont un rôle important.

Développement d'approches pour l'intelligence artificielle à base de bruit

Les approches actuelles de l'IA sont largement basées sur la multiplication matricielle. Dans le de ce projet postdoccadre toral, nous aimerions poser la question suivante : quelle est la prochaine étape ? Plus précisément, nous aimerions étudier si le bruit (stochastique) pourrait être la primitive computationnelle sur laquelle la nouvelle génération d'IA est construite. Nous répondrons à cette question en deux étapes. Tout d'abord, nous explorerons les théories concernant le rôle computationnel du bruit microscopique et au niveau du système dans les neurosciences, ainsi que la façon dont le bruit est de plus en plus exploité dans l'intelligence artificielle. Nous visons à établir des liens concrets entre ces deux domaines et, en particulier, nous explorerons la relation entre le bruit et la quantification de l'incertitude.
Sur cette base, le chercheur postdoctorant développera ensuite de nouveaux modèles qui exploitent le bruit pour effectuer des tâches cognitives, dont l'incertitude est une composante intrinsèque. Cela ne servira pas seulement comme une approche d'IA, mais aussi comme un outil informatique pour étudier la cognition chez les humains et aussi comme un modèle pour des zones spécifiques du cerveau connues pour participer à divers aspects de la cognition, de la perception à l’apprentissage, la prise de décision et la quantification de l'incertitude.
Les perspectives du projet postdoctoral devraient informer sur la manière dont l'imagerie IRMf et les enregistrements électrophysiologies invasifs et non invasifs peuvent être utilisés pour tester les théories de ce modèle. En outre, le candidat devra interagir avec d'autres activités du CEA liées au développement d'accélérateurs d'IA analogiques basés sur le bruit.

Top