VALERIAN: simulation du transport d'électrons pour les modules les modules ITkPix d'ATLAS
Une description précise du transport des électrons et des photons dans la matière est cruciale dans plusieurs domaines phares du CEA, notamment la radioprotection et l’instrumentation nucléaire. Leur validation nécessite des études paramétriques dédiées et des mesures. Étant donné le peu de données expérimentales publiques, des comparaisons entre codes de calcul sont aussi utilisées. L’enjeu pour les années à venir est une qualification de ces codes dans un large domaine d'énergie, certains écarts entre leurs résultats ayant été identifiés lors d’études préliminaires du SERMA faisant intervenir le transport couplé de neutrons, photons et électrons. Le projet VALERIAN consiste à saisir l’opportunité créée par une campagne de prise de données unique en son genre prévue en 2025-2026 à l’IRFU (DRF) pour mieux caractériser ces écarts. En effet, l’IRFU s’est engagé à contrôler au moins 750 modules à pixels pour le nouveau trajectographe de l’expérience ATLAS, dans le cadre de la jouvence des grands détecteurs du CERN. De nombreuses mesures avec des sources bêta seront réalisées en 2025-2026 pour la qualification de ces modules.
Etude de la THERmodiffusion des Petits Polarons dans UO2
Le sujet est publié sur le site recrutement de CEA à l'adresse suivante :
https://www.emploi.cea.fr/offre-de-emploi/emploi-post-doctorat-etude-en-ab-initio-de-la-thermodiffusion-des-petits-polarons-dans-UO2-h-f_36670.aspx
Module PV réparable intégrant un élément de délamination par ultrason
Les panneaux photovoltaïques (PV) ont une durée de vie limitée en raison de la dégradation de leur performance, de défauts opérationnels ou de facteurs économiques. D’ici dix ans, des millions de tonnes de panneaux PV deviendront des déchets, posant des défis environnementaux et sociétaux significatifs. L'Union Européenne a reconnu ce problème par la directive WEEE pour la gestion des déchets électriques et électroniques.
Les modules PV sont des assemblages complexes contenant des matériaux critiques tel que l'argent et des polluants persistants comme les polymères fluorés. De plus, le verre et le silicium mis en œuvre présentent une empreinte carbone élevée, rendant le réemploi essentiel pour atténuer l'impact environnemental. Diverses techniques de démantèlement sont explorées pour extraire les métaux, les polymères et le verre. Les objectifs concernent la sélectivité et le rendement des procédés, la pureté des matériaux obtenus. Pour renforcer la durabilité du photovoltaïque, la gestion des modules dans une vision d'économie circulaire est essentielle.
Le CEA/LITEN mène des recherches sur les méthodes de délamination pour améliorer la qualité des matériaux recyclés. Dans ce postdoctorat, nous explorerons la capacité des ultrasons pour le démantèlement ou la réparation des modules PV. Le développement d'un modèle numérique pour comprendre les phénomènes de vibration dans les panneaux PV permettra la conception d'un outil pour un couplage efficace. En plus de la modélisation et de la mise en place de l'outil, nous explorerons de nouvelles architectures de modules PV en intégrant des couches composites sensibles aux ultrasons. L'évaluation de divers phénomènes induits tels que la transmission optique et le comportement thermomécanique fera partie de l'étude. Ce projet tirera parti d'un environnement scientifique de haut niveau, avec une expertise en modélisation numérique thermomécanique, en conception de modules PV et en fabrication de prototypes.
Étude de la formulation Vitesse-Vorticité-Pression pour discrétiser les équations de Navier-Stokes.
Les équations de Navier-Stokes incompressibles sont parmi les modèles les plus
utilisés pour décrire les écoulements d’un fluide newtonien (c’est-à-dire un fluide dont la viscosité est indépendante des forces extérieures appliquée au fluide). Ces équations modélisent le champ de vitesse et le champ de pression du fluide. La première des deux équations n’est autre que la loi de Newton, tandis que la seconde découle de la conservation de la masse dans le cas d’un fluide incompressible (la divergence de la vitesse est nulle). L’approximation numérique de ces équations est un véritable défi en raison de leur caractère tridimensionnel et instationnaire, de la contrainte de divergence nulle et enfin de la non-linéarité du terme de convection. Il existe différentes méthodes de discrétisation, mais pour la plupart de ces méthodes, l’équation de conservation de la masse n’est pas satisfaite exactement. Une alternative consiste alors à introduire comme inconnue supplémentaire la vorticité du fluide, égale au rotationel de la vitesse. On réécrit alors les équations de Navier-Stokes avec trois équations. Le post-doc consiste à étudier d'un point de vue théorique et numérique cette formulation et de proposer un algorithme de résolution efficace, dans le code TrioCFD.
Développement d'une nouvelle génération d'adhésifs polymères réversibles
Les adhésifs polymères sont des systèmes généralement réticulés utilisés pour lier deux substrats durant toute la durée de vie d’un assemblage pouvant être multimatériau et ce pour de multiples applications. En fin de vie, la présence d’adhésifs rend difficile la séparation des matériaux ainsi que leur recyclage, du fait de la difficulté de détruire la réticulation de l’adhésif sans traitement chimique ou thermique agressif également pour les substrats liés.
Dans ce cadre, le CEA développe des adhésifs à recyclabilité augmentée, et ce via l’intégration de la recyclabilité dans les structures chimiques dès la synthèse des réseaux polymères. Une première approche consiste à intégrer à des réseaux polymères des liaisons dynamiques covalentes, échangeables sous stimulus généralement thermique (par exemple des vitrimères). Une seconde consiste à synthétiser des polymères dépolymérisables sous un stimulus spécifique (polymères auto-immolables) ayant la capacité de réticuler.
Dans ce contexte, le.a post-doctorant.e développera 2 réseaux utilisables en tant qu’adhésif à recyclabilité augmentée. Un premier réseau se basera sur une chimie dépolymérisable sous stimulus déjà développée sur des chaines linéaires de polymère, devant être transposée à un réseau. D’autre part, un second réseau vitrimère sera synthétisé sur la base de travaux précédents au CEA. L’activation de l’échange de liaisons dans ce réseau se fera via un catalyseur dit photolatent, activable par UV et permettant d’obtenir un adhésif à stimulus UV et thermique. Le choix, la synthèse de ces catalyseurs et leurs impacts sur l’adhésif seront l’objet de l’étude réalisée. Les catalyseurs obtenus pourront également être utilisés comme déclencheurs de la dépolymérisation du premier système dépolymérisable sous stimulus.
Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique
Lors de l'irradiation en réacteur, les pastilles de combustible subissent des modifications microstructurales. Au-delà de 40 GWd/tU, une structure High Burnup Structure (HBS) apparaît en périphérie, où les grains initiaux (~10 µm) se subdivisent en sous-grains (~0.2 µm). Près du centre, sous haute température, des sous-grains faiblement désorientés se forment. Ces évolutions résultent de la perte d'énergie des produits de fission, générant des défauts tels que dislocations et cavités. Pour étudier l'effet de la taille des grains sur ces dommages, des échantillons de UO2 nanostructurés seront synthétisés au JRC-K par frittage flash. Des irradiations ioniques seront menées à JANNuS-Saclay et GSI, suivies de caractérisations (Raman, MET, MEB-EBSD, DRX). Le postdoctorat se déroulera au JRC-K, CEA Saclay et CEA Cadarache sous encadrement spécialisé.
Calcul Haute performance exploitant la technologie CMOS Silicium à température cryogénique
Les avancées en matériaux, architectures de transistors et technologies de lithographie ont permis une croissance exponentielle des performances et de l’efficacité énergétique des circuits intégrés. De nouvelles voies, dont le fonctionnement à température cryogénique, pourraient permettre de nouvelles avancées. L’électronique cryogénique, nécessaire pour manipuler des Qubits à très basse température, est en plein essor. Des processeurs à 4.2 K utilisant 1.4 zJ par opération ont été proposés, basés sur l’électronique supraconductrice. Une autre approche consiste à réaliser des processeurs séquentiels très rapides en utilisant des technologies spécifiques et la basse température, réduisant la dissipation énergétique mais nécessitant un refroidissement. À basse température, les performances des transistors CMOS avancés augmentent, permettant de travailler à plus basse tension et d’augmenter les fréquences de fonctionnement. Cela pourrait améliorer l’efficacité séquentielle des calculateurs et simplifier la parallélisation des codes informatiques. Cependant, il faut repenser les matériaux et l’architecture des composants et circuits pour maximiser les avantages des basses températures. Le projet post-doctoral vise à déterminer si la température cryogénique offre un gain de performances suffisant pour le CMOS ou si elle doit être vue comme un catalyseur pour de nouvelles technologies de calcul haute performance. L’objectif est notamment d’évaluer l’augmentation de la vitesse de traitement avec des composants silicium conventionnels à basse température, en intégrant mesures et simulations.
Conception et mise en œuvre d’un réseau de neurones pour la simulation thermo-mécanique en fabrication additive
Le procédé WAAM (Wire Arc Additive Manufacturing) est une méthode de fabrication additive métallique permettant de fabriquer des pièces de grandes dimensions avec un taux de dépôt élevé. Cependant, ce procédé engendre des pièces fortement contraintes et déformées, rendant complexe la prédiction de leurs caractéristiques géométriques et mécaniques. La modélisation thermomécanique est essentielle pour prédire ces déformations, mais elle nécessite d'importantes ressources numériques et des temps de calcul élevés. Le projet NEUROWAAM vise à développer un modèle numérique thermomécanique précis et rapide en utilisant des réseaux de neurones pour prédire les phénomènes physiques du procédé WAAM. Un stage en 2025 fournira une base de données via des simulations thermomécaniques avec le logiciel CAST3M. L'objectif du post-doc est de développer une architecture de réseaux de neurones capable d'apprendre la relation entre la configuration de fabrication et les caractéristiques thermomécaniques des pièces. Des essais de fabrication sur la plateforme PRISMA du CEA seront réalisés pour valider le modèle et préparer une boucle de rétroaction. Le Laboratoire de Simulation Interactive du CEA List apportera son expertise en accélération de simulations par réseaux de neurones et en apprentissage actif pour réduire le temps d'entraînement.
Elaboration et caractérisation d'un composite oxyde/oxyde
Les composites fibreux à matrice céramique (CMC) sont une classe de matériaux qui combinent de bonnes propriétés mécaniques spécifiques (propriétés rapportées à leur densité) à une tenue à haute température (> 1000 °C) même sous atmosphère oxydante. Ils sont généralement constitués d’un renfort fibreux carbone ou céramique et d’une matrice céramique (carbure ou oxyde).
L’étude proposée porte sur la mise au point d’un CMC oxyde/oxyde à matrice faible possédant des propriétés diélectriques, thermiques et mécaniques adaptées.
Cette étude se fera en collaboration avec plusieurs laboratoires du CEA Le Ripault
Correction numérique de l’état de santé d’un réseau électrique
Les défauts de câbles sont généralement détectés lorsque la communication est interrompue, ce qui entraîne des coûts et des temps de réparation non négligeables. De plus, l’intégrité des données devient un enjeu majeur en raison des menaces d’attaques et d’intrusions accrues sur les réseaux électriques, qui peuvent perturber la communication. Pouvoir distinguer une perturbation due à la dégradation de la couche physique d’un réseau électrique ou à une attaque en cours sur le réseau énergétique, permettra de guider la prise de décision concernant les opérations de correction, notamment la reconfiguration du réseau et la maintenance prédictive, afin de garantir la résilience du réseau. Le sujet propose d’étudier la relation entre les défauts naissants sur les câbles et leur impact sur l’intégrité des données dans le cadre d’une communication par lignes électriques ou PLC (Power Line Communication). Les travaux se baseront sur le déploiement d’une instrumentation utilisant la réflectométrie électrique, combinant des capteurs distribués et des algorithmes d’IA pour le diagnostic en ligne des défauts naissants sur les réseaux électriques. En présence de certains défauts, des méthodes avancées d’IA seront appliquées afin de corriger numériquement l’état de santé de la couche physique du réseau électrique et garantir ainsi sa fiabilité.