Modélisation de la réponse instrumentale des télescopes spatiaux avec un modèle optique différentiable

Contexte

L'effet de lentille gravitationnelle faible [1] est une sonde puissante de la structure à grande échelle de notre univers. Les cosmologistes utilisent l'effet de lentille faible pour étudier la nature de la matière noire et sa distribution spatiale. Les missions d'observation de l'effet de lentille faible nécessitent des mesures très précises de la forme des images de galaxies. La réponse instrumentale du télescope, appelée fonction d'étalement du point (PSF), produit une déformation des images observées. Cette déformation peut être confondue avec les effets d'un faible effet de lentille sur les images de galaxies, ce qui constitue l'une des principales sources d'erreur systématique lors de la recherche sur les faibles effets de lentille. Par conséquent, l'estimation d'un modèle de PSF fiable et précis est cruciale pour le succès de toute mission de faible lentille [2]. Le champ de la PSF peut être interprété comme un noyau convolutionnel qui affecte chacune de nos observations d'intérêt, qui varie spatialement, spectralement et temporellement. Le modèle de la PSF doit être capable de gérer chacune de ces variations. Nous utilisons des étoiles spécifiques considérées comme des sources ponctuelles dans le champ de vision pour contraindre notre modèle PSF. Ces étoiles, qui sont des objets non résolus, nous fournissent des échantillons dégradés du champ de la PSF. Les observations subissent différentes dégradations en fonction des propriétés du télescope. Ces dégradations comprennent le sous-échantillonnage, l'intégration sur la bande passante de l'instrument et le bruit additif. Nous construisons finalement le modèle de la PSF en utilisant ces observations dégradées et utilisons ensuite le modèle pour déduire la PSF à la position des galaxies. Cette procédure constitue le problème inverse mal posé de la modélisation de la PSF. Voir [3] pour un article récent sur la modélisation de la PSF.

La mission Euclid récemment lancée représente l'un des défis les plus complexes pour la modélisation de la PSF. En raison de la très large bande passante de l'imageur visible (VIS) d'Euclid, allant de 550 nm à 900 nm, les modèles de PSF doivent capturer non seulement les variations spatiales du champ de PSF, mais aussi ses variations chromatiques. Chaque observation d'étoile est intégrée avec la distribution d'énergie spectrale (SED) de l'objet sur l'ensemble de la bande passante du VIS. Comme les observations sont sous-échantillonnées, une étape de super-résolution est également nécessaire. Un modèle récent appelé WaveDiff [4] a été proposé pour résoudre le problème de modélisation de la PSF pour Euclid et est basé sur un modèle optique différentiable. WaveDiff a atteint des performances de pointe et est en train d'être testé avec des observations récentes de la mission Euclid.

Le télescope spatial James Webb (JWST) a été lancé récemment et produit des observations exceptionnelles. La collaboration COSMOS-Web [5] est un programme à grand champ du JWST qui cartographie un champ contigu de 0,6 deg2. Les observations de COSMOS-Web sont disponibles et offrent une occasion unique de tester et de développer un modèle précis de PSF pour le JWST. Dans ce contexte, plusieurs cas scientifiques, en plus des études de lentille gravitationnelle faible, peuvent grandement bénéficier d'un modèle PSF précis. Par exemple, l'effet de lentille gravitationnel fort [6], où la PSF joue un rôle crucial dans la reconstruction, et l'imagerie des exoplanètes [7], où les speckles de la PSF peuvent imiter l'apparence des exoplanètes, donc la soustraction d'un modèle de PSF exact et précis est essentielle pour améliorer l'imagerie et la détection des exoplanètes.

Projet de doctorat

Le candidat visera à développer des modèles PSF plus précis et plus performants pour les télescopes spatiaux en exploitant un cadre optique différentiable et concentrera ses efforts sur Euclid et le JWST.

Le modèle WaveDiff est basé sur l'espace du front d'onde et ne prend pas en compte les effets au niveau du pixel ou du détecteur. Ces erreurs au niveau des pixels ne peuvent pas être modélisées avec précision dans le front d'onde car elles se produisent naturellement directement sur les détecteurs et ne sont pas liées aux aberrations optiques du télescope. Par conséquent, dans un premier temps, nous étendrons l'approche de modélisation de la PSF en tenant compte de l'effet au niveau du détecteur en combinant une approche paramétrique et une approche basée sur les données (apprises). Nous exploiterons les capacités de différenciation automatique des cadres d'apprentissage automatique (par exemple TensorFlow, Pytorch, JAX) du modèle WaveDiff PSF pour atteindre l'objectif.

Dans une deuxième direction, nous envisagerons l'estimation conjointe du champ de la PSF et des densités d'énergie spectrale (SED) stellaires en exploitant des expositions répétées ou des dithers. L'objectif est d'améliorer et de calibrer l'estimation originale de la SED en exploitant les informations de modélisation de la PSF. Nous nous appuierons sur notre modèle PSF, et les observations répétées du même objet changeront l'image de l'étoile (puisqu'elle est imagée sur différentes positions du plan focal) mais partageront les mêmes SED.

Une autre direction sera d'étendre WaveDiff à des observatoires astronomiques plus généraux comme le JWST avec des champs de vision plus petits. Nous devrons contraindre le modèle de PSF avec des observations de plusieurs bandes pour construire un modèle de PSF unique contraint par plus d'informations. L'objectif est de développer le prochain modèle de PSF pour le JWST qui soit disponible pour une utilisation généralisée, que nous validerons avec les données réelles disponibles du programme COSMOS-Web JWST.

La direction suivante sera d'étendre les performances de WaveDiff en incluant un champ continu sous la forme d'une représentation neuronale implicite [8], ou de champs neuronaux (NeRF) [9], pour traiter les variations spatiales de la PSF dans l'espace du front d'onde avec un modèle plus puissant et plus flexible.

Enfin, tout au long de son doctorat, le candidat collaborera à l'effort de modélisation de la PSF par les données d'Euclid, qui consiste à appliquer WaveDiff aux données réelles d'Euclid, et à la collaboration COSMOS-Web pour exploiter les observations du JWST.

Références

[1] R. Mandelbaum. “Weak Lensing for Precision Cosmology”. In: Annual Review of Astronomy and Astro- physics 56 (2018), pp. 393–433. doi: 10.1146/annurev-astro-081817-051928. arXiv: 1710.03235.
[2] T. I. Liaudat et al. “Multi-CCD modelling of the point spread function”. In: A&A 646 (2021), A27. doi:10.1051/0004-6361/202039584.
[3] T. I. Liaudat, J.-L. Starck, and M. Kilbinger. “Point spread function modelling for astronomical telescopes: a review focused on weak gravitational lensing studies”. In: Frontiers in Astronomy and Space Sciences 10 (2023). doi: 10.3389/fspas.2023.1158213.
[4] T. I. Liaudat, J.-L. Starck, M. Kilbinger, and P.-A. Frugier. “Rethinking data-driven point spread function modeling with a differentiable optical model”. In: Inverse Problems 39.3 (Feb. 2023), p. 035008. doi:10.1088/1361-6420/acb664.
[5] C. M. Casey et al. “COSMOS-Web: An Overview of the JWST Cosmic Origins Survey”. In: The Astrophysical Journal 954.1 (Aug. 2023), p. 31. doi: 10.3847/1538-4357/acc2bc.
[6] A. Acebron et al. “The Next Step in Galaxy Cluster Strong Lensing: Modeling the Surface Brightness of Multiply Imaged Sources”. In: ApJ 976.1, 110 (Nov. 2024), p. 110. doi: 10.3847/1538-4357/ad8343. arXiv: 2410.01883 [astro-ph.GA].
[7] B. Y. Feng et al. “Exoplanet Imaging via Differentiable Rendering”. In: IEEE Transactions on Computational Imaging 11 (2025), pp. 36–51. doi: 10.1109/TCI.2025.3525971.
[8] Y. Xie et al. “Neural Fields in Visual Computing and Beyond”. In: arXiv e-prints, arXiv:2111.11426 (Nov.2021), arXiv:2111.11426. doi: 10.48550/arXiv.2111.11426. arXiv: 2111.11426 [cs.CV].
[9] B. Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”. In: arXiv e-prints, arXiv:2003.08934 (Mar. 2020), arXiv:2003.08934. doi: 10.48550/arXiv.2003.08934. arXiv:2003.08934 [cs.CV].

De la combustion à l’astrophysique : simulations exaflopiques des écoulements fluides/particules

Cette thèse se concentre sur le développement de méthodes numériques avancées pour simuler les interactions entre fluides et particules dans des environnements complexes. Ces méthodes, initialement utilisées dans des applications industrielles comme la combustion et les écoulements multiphasiques, seront améliorées pour permettre une utilisation dans des codes de simulation pour supercalculateur exaflopique et adaptées aux besoins de l'astrophysique. L'objectif est de permettre l'étude des phénomènes astrophysiques tels que : la dynamique des poussières dans les disques protoplanétaires et la structuration de la poussière dans les proto-étoiles et le milieu interstellaire. Les résultats attendus incluent une meilleure compréhension des mécanismes de formation planétaire et de structuration des disques, ainsi que des avancées dans les méthodes numériques qui seront bénéfiques pour les sciences industrielles et astrophysiques.

ÉTUDE DE LA VARIABILITE MULTI-ECHELLES DU CIEL GAMMA A TRES HAUTE ENERGIE

L'astronomie gamma de très haute énergie observe le ciel au-dessus de quelques dizaines de GeV. Ce domaine émergent de l’astronomie est en plein essor depuis le début des années 1990, en particulier, depuis la mise en service en 2004 du réseau de télescopes H.E.S.S. en Namibie. L'IRFU/CEA-Paris Saclay est un membre particulièrement actif de cette collaboration depuis ses débuts. Il est également impliqué dans la préparation du futur observatoire CTAO (Cherenkov Telescope Array Observatory) qui est actuellement en phase d’installation. La détection des photons gamma d'énergie supérieure à quelques dizaines de GeV permet d'étudier les processus d’accélération des particules chargées au sein d’objets aussi variés que les vestiges de supernova ou les noyaux actifs de galaxies. Par ce biais, H.E.S.S. vise notamment à répondre à la question centenaire de l'origine des rayons cosmiques.
H.E.S.S. permet de mesurer la direction, l'énergie et le temps d'arrivée de chaque photon détecté. La mesure du temps a permis de mettre en évidence des sources dont le flux présente des variations temporelles importantes ou encore périodiques. L'étude de ces émissions variables (transitoires ou périodiques), que ce soit en direction du Centre Galactique ou de noyaux actifs de galaxies (AGN) lointains permet de mieux comprendre les processus d'émissions à l'œuvre au sein de ces sources, de caractériser le milieu dans lequel les photons se propagent mais également de tester la validité de certaines lois physiques fondamentales comme l’invariance de Lorentz. La large gamme d'échelles temporelles qu'il est possible de sonder permet de rechercher et d'étudier des sursauts ou des variations dans le flux des sources allant de quelques secondes (sursaut gamma, trous noirs primordiaux) à quelques années (systèmes binaires de haute masse, noyaux actifs de galaxie).
L'un des succès majeurs des deux décennies de prise de données de H.E.S.S. a été de conduire à des relevés des ciels galactique et extragalactique aux très-hautes énergies. Ces relevés combinent des observations dédiées à certaines sources,
comme le Centre Galactique ou certains vestiges de supernovæ, mais aussi des observations à l’aveugle pour la découverte de nouvelles sources. Le sujet de thèse proposé ici porte sur un aspect de l’étude des sources qui reste à explorer : la recherche et l'étude de la variabilité des sources de très hautes énergies. Pour les sources variables, il est également intéressant de corréler la variabilité dans d’autres domaines de longueurs d’onde. Finalement le modèle de la source peut aider à prédire son comportement, par exemple ses « états hauts » ou ses sursauts.

Chimie de déséquilibre des atmosphères d'exoplanètes à haute métallicité à l'époque du JWST

En un peu plus de deux ans d'exploitation scientifique, le JWST a révolutionné notre compréhension des exoplanètes et de leurs atmosphères. La mission spatiale ARIEL, qui sera lancée en 2029, contribuera bientôt à cette révolution. L'une des principales découvertes rendues possibles par la qualité exceptionnelle des données du JWST est que les atmosphères des exoplanètes sont en déséquilibre chimique. Un traitement complet du déséquilibre est complexe, en particulier lorsque les atmosphères sont riches en métaux, c'est-à-dire lorsqu'elles contiennent en abondance significative des éléments autres que l'hydrogène et l'hélium. Dans un premier temps, notre projet étudiera numériquement l'étendue du déséquilibre chimique dans les atmosphères des cibles du JWST suspectées d'avoir des atmosphères riches en métaux. Nous utiliserons à cette fin un modèle photochimique interne. Dans un deuxième temps, notre projet explorera l'effet de la chimie super-thermique comme moteur du déséquilibre chimique. Cela permettra d'obtenir des informations inédites sur la chimie des atmosphères riches en métaux, avec le potentiel de jeter un nouvel éclairage sur les trajectoires chimiques et évolutives des exoplanètes de faible masse.

Etude des sursauts gamma cosmiques détectes par la mission SVOM

Les sursauts gamma cosmiques (GRBs) sont des bref (0.1-100 s) éclairs de photons gamma qui apparaissent de façon imprévisible sur toute la voûte céleste. Bien que découverts à la fin des années 1960, ils sont restés mystérieux jusqu'à la fin des années 1990 à cause de leur nature furtive. Ce n'est que grâce aux observations du satellite BepppSAX à la fin des années 1990 et surtout à celles du satellite Swift à partir des années 2000, que le mystère de la nature de ces sources à pu être percé.
En fait il s'agit d'émissions liées d'une part aux phases finales d'une étoile très massive (30-50 fois la masse su Soleil) pour les sursaut longs (>2 s) et de l'autre à la coalescence de deux objets compacts (typiquement deux étoiles à neutrons) pour les sursauts courts (< 2s). Dans tous les cas il y a création d'un jet de matière relativiste qui est à l'origine de l'émission gamma et dans les autres bandes d'énergie. Si ce puissant jet est pointé vers la terre on peut observer les sursauts gamma jusqu'à des distances très élevées (z~9.1) ce qui correspond à un age très jeune de notre Univers (~500 Myr).
SVOM est une mission satellitaire franco-chinoise dédiée à l'etude des sursauts gamma, qui a été lancée avec succès le 22 juin 2024 et dans laquelle le CEA/Irfu/DAp est fortement impliqué. Le sujet de thèse se propose d'exploiter les données multi-longueur d'onde de la charge utile de SVOM et des télescopes partenaires pour mieux étudier la nature des sursauts gamma et en particulier d'utiliser les données du telescope à rayons X MXT, pour mieux contraindre la nature de l'objet compact qui est la source des jets relativistes, qui sont à l'origine des émissions observées.

L'aube de la formation planétaire

La formation des planètes est un sujet phare de l’astrophysique avec des implications sur des questions existentielles comme l’origine de la vie dans l’Univers. De manière surprenante, nous ne savons pas précisément quand les planètes se forment au sein des disques protoplanétaires. De récentes observations semblent indiquer que ce processus pourrait se produire tôt dans l’évolution de ces disques. Mais les conditions qui règnent dans les disques jeunes sont encore méconnues. Au cours de cette thèse, nous proposons d’étudier l’hypothèse d’une formation rapide des planètes. Nous effectuerons des simulations 3D de formation des disques, incluant l’évolution du gaz, de la poussière ainsi que des mécanismes permettant de convertir les poussières en planétésimaux lorsque les conditions seront adéquates. En plus de déterminer si les planètes se forment rapidement ou non, nous pourrons étudier l’architecture des systèmes planétaires formés et la comparer aux systèmes d’exoplanètes observés. Ce travail, à la pointe de nos connaissances actuelles, s’inscrit dans de nombreux efforts de la communauté pour mieux comprendre les exoplanètes ainsi que nos origines.

IA générative pour la quantification robuste des incertitudes dans les problèmes inverses en astrophysiques

Contexte
Les problèmes inverses, c'est-à-dire l'estimation des signaux sous-jacents à partir d'observations corrompues, sont omniprésents en astrophysique, et notre capacité à les résoudre avec précision est essentielle à l'interprétation scientifique des données. Parmi les exemples de ces problèmes, on peut citer l'inférence de la distribution de la matière noire dans l'Univers à partir des effets de lentille gravitationnelle [1], ou la séparation des composantes dans l'imagerie radio-interférométrique [2].

Grâce aux récents progrès de l'apprentissage profond, et en particulier aux techniques de modélisation générative profonde (par exemple les modèles de diffusion), il est désormais possible non seulement d'obtenir une estimation de la solution de ces problèmes inverses, mais aussi d'effectuer une quantification de l'incertitude en estimant la distribution de probabilité a posteriori Bayésienne du problème, c'est-à-dire en ayant accès à toutes les solutions possibles qui seraient permises par les données, mais aussi plausibles en fonction des connaissances antérieures.

Notre équipe a notamment été pionnière dans l'élaboration de méthodes bayésiennes combinant notre connaissance de la physique du problème, sous la forme d'un terme de vraisemblance explicite, avec des à prioris basées sur les données et mises en œuvre sous la forme de modèles génératifs. Cette approche contrainte par la physique garantit que les solutions restent compatibles avec les données et évite les « hallucinations » qui affectent généralement la plupart des applications génératives de l'IA.

Cependant, malgré les progrès remarquables réalisés au cours des dernières années, plusieurs défis subsistent dans le cadre évoqué ci-dessus, et plus particulièrement :

[Données à priori imparfaites ou avec une distribution décalée] La construction de données à priori nécessite généralement l'accès à des exemples de données non corrompues qui, dans de nombreux cas, n'existent pas (par exemple, toutes les images astronomiques sont observées avec du bruit et une certaine quantité de flou), ou qui peuvent exister mais dont la distribution peut être décalée par rapport aux problèmes auxquels nous voudrions appliquer ce distribution à priori.
Ce décalage peut fausser les estimations et conduire à des conclusions scientifiques erronées. Par conséquent, l'adaptation, ou l'étalonnage, des antécédents basés sur les données à partir d'observations incomplètes et bruyantes devient cruciale pour travailler avec des données réelles dans les applications astrophysiques.

[Échantillonnage efficace de distributions a posteriori à haute dimension] Même si la vraisemblance et l'à priori basé par les données sont disponibles, l'échantillonnage correct et efficace de distributions de probabilités multimodales non convexes dans des dimensions si élevées reste un problème difficile. Les méthodes les plus efficaces à ce jour reposent sur des modèles de diffusion, mais elles s'appuient sur des approximations et peuvent être coûteuses au moment de l'inférence pour obtenir des estimations précises des distributions a posteriori souhaités.

Les exigences strictes des applications scientifiques sont un moteur puissant pour l'amélioration des méthodologies, mais au-delà du contexte scientifique astrophysique qui motive cette recherche, ces outils trouvent également une large application dans de nombreux autres domaines, y compris les images médicales [3].

Projet de doctorat
Le candidat visera à répondre à ces limitations des méthodologies actuelles, avec l'objectif global de rendre la quantification de l'incertitude pour les problèmes inverses à grande échelle plus rapide et plus précise.
Comme première direction de recherche, nous étendrons une méthodologie récente développée simultanément par notre équipe et nos collaborateurs de Ciela [4,5], basée sur l'algorithme d'espérance-maximisation, afin d'apprendre itérativement (ou d'adapter) des distributions à priori basés sur des méthodes de diffusion à des données observées sous un certain degré de corruption. Cette stratégie s'est avérée efficace pour corriger les décalages de la distribution á priori (et donc pour obtenir des distributions à posteriori bien calibrés). Cependant, cette approche reste coûteuse car elle nécessite la résolution itérative de problèmes inverses et le réentraînement des modèles de diffusion, et dépend fortement de la qualité du solveur de problèmes inverses. Nous explorerons plusieurs stratégies, notamment l'inférence variationnelle et les stratégies améliorées d'échantillonnage pour des problèmes inverses, afin de résoudre ces difficultés.
Dans une deuxième direction (mais connexe), nous nous concentrerons sur le développement de méthodologies générales pour l'échantillonnage de postérieurs complexes (géométries multimodales/complexes) de problèmes inverses non linéaires. En particulier, nous étudierons des stratégies basées sur le recuit (annealing) de la distribution à posteriori, inspirées de l'échantillonnage de modèles de diffusion, applicables dans des situations avec des vraisemblances et des distributions à priori explicites.
Finalement, nous appliquerons ces méthodologies à des problèmes inverses difficiles et à fort impact en astrophysique, en particulier en collaboration avec nos collègues de l'institut Ciela, nous viserons à améliorer la reconstruction des sources et des lentilles des systèmes de lentilles gravitationnelles fortes.
Des publications dans les meilleures conférences sur l'apprentissage automatique sont attendues (NeurIPS, ICML), ainsi que des publications sur les applications de ces méthodologies dans des revues d'astrophysique.

Références
[1] Benjamin Remy, Francois Lanusse, Niall Jeffrey, Jia Liu, Jean-Luc Starck, Ken Osato, Tim Schrabback, Probabilistic Mass Mapping with Neural Score Estimation, https://www.aanda.org/articles/aa/abs/2023/04/aa43054-22/aa43054-22.html

[2] Tobías I Liaudat, Matthijs Mars, Matthew A Price, Marcelo Pereyra, Marta M Betcke, Jason D McEwen, Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging, RAS Techniques and Instruments, Volume 3, Issue 1, January 2024, Pages 505–534, https://doi.org/10.1093/rasti/rzae030

[3] Zaccharie Ramzi, Benjamin Remy, Francois Lanusse, Jean-Luc Starck, Philippe Ciuciu, Denoising Score-Matching for Uncertainty Quantification in Inverse Problems, https://arxiv.org/abs/2011.08698

[4] François Rozet, Gérôme Andry, François Lanusse, Gilles Louppe, Learning Diffusion Priors from Observations by Expectation Maximization, NeurIPS 2024, https://arxiv.org/abs/2405.13712

[5] Gabriel Missael Barco, Alexandre Adam, Connor Stone, Yashar Hezaveh, Laurence Perreault-Levasseur, Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems, https://arxiv.org/abs/2407.17667

Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel

L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.

Analyse multi-messager des explosions de supernovae

Les supernovae a` effondrement de cœur jouent un rôle pivot dans l’évolution stellaire des étoiles massives, la naissance des étoiles à neutrons et des trous noir, et l’enrichissement chimique des galaxies. Comment explosent-elles ? Le mécanisme d’explosion peut être éclairé par l’analyse des signaux multi-messager: la production de neutrinos et d’ondes gravitationnelles est modulée par les instabilités hydrodynamiques pendant la seconde qui suit la formation d’une proto-étoile à neutrons.
Cette the`se propose d’utiliser la complémentarité des signaux multi-messager d’une supernova a` effondrement de cœur, à la lumière des simulations numériques de la dynamique de l’effondrement et de l'analyse perturbative, pour en extraire les informations physiques sur le mécanisme d’explosion.
Le projet abordera plus spécifiquement les propriétés multi-messager de l'instabilité du choc stationnaire ("SASI") et de l'instabilite´ de corotation ("low T/W") pour un progéniteur en rotation. Pour chacune de ces instabilités, les informations de composition des neutrinos et de polarisation des ondes gravitationnelles seront exploitées, ainsi que la corrélation entre ces signaux.

Astrophysique de laboratoire relativiste

La thèse proposée porte sur la modélisation numérique et théorique des plasmas ultra relativistes rencontrés dans certains objets astrophysiques, tels les sursauts gamma ou les nébuleuses de vent de pulsar, ainsi que dans de futures expériences d'interaction laser-plasma, faisceau-plasma ou gamma-plasma en régime extrême. Ces dernières pourront avoir lieu sur les installations laser multi-pétawatt actuellement en développement (par ex. le projet européen ELI) ou sur les accélérateurs de particules de nouvelle génération (par ex. l'installation américaine SLAC/FACET-II).
Les plasmas considérés, qui se caractérisent par un fort couplage entre particules, rayonnements énergétiques et mécanismes d'électrodynamique quantique, seront simulés numériquement au moyen d'un code « particle-in-cell » (PIC) développé au CEA/DAM depuis plusieurs années. Outre les effets collectifs propres aux plasmas, ce code décrit certains processus de rayonnement gamma et de création de paires électron-positron. Le but de la thèse sera d'y inclure de nouveaux mécanismes d'interaction photon-particule et photon-photon, puis d'examiner en détail leur impact dans diverses configurations expérimentales et astrophysiques.

Top