Etude numérique de la turbulence interstellaire à l'heure de l'exascale

Ce projet de thèse vise à mieux comprendre la turbulence du milieu interstellaire, un phénomène clé pour la formation des étoiles et des structures galactiques. Cette turbulence, à la fois magnétisée, supersonique et multiphasique, influence la manière dont l’énergie se propage et se dissipe, régulant ainsi l’efficacité de la formation stellaire à travers l’histoire de l’Univers. Son étude est complexe car elle implique une vaste gamme d’échelles spatiales et temporelles, difficile à reproduire numériquement. Les progrès du calcul haute performance, notamment l’arrivée des supercalculateurs exascale à GPU permet désormais d’envisager des simulations beaucoup plus fines.

Le code Dyablo, développé à l’IRFU, sera utilisé pour réaliser des simulations tridimensionnelles de très grande taille, avec un maillage adaptatif pour affiner les zones de dissipation d’énergie. L’étude progressera par étapes : d’abord des écoulements simples et isothermes, puis des modèles incluant chauffage, refroidissement, champ magnétique et gravité. Les propriétés turbulentes seront analysées via spectres de puissance, fonctions de structure et distributions de densité, afin de mieux comprendre la formation des zones denses propices à la naissance des étoiles. Enfin, une extension du travail à l’échelle galactique, en collaboration avec d’autres instituts français, visera à explorer la cascade d’énergie turbulente à grande échelle dans les galaxies entières.

Exoplanetes : l'apport des courbes de phase observées avec le JWST

Le télescope spatial James Webb (JWST), lancé par la NASA le 25 décembre 2021, révolutionne notre compréhension du cosmos, en particulier dans le domaine des exoplanètes. Avec plus de 6 000 exoplanètes détectées, on découvre des mondes très variés, dont certains sans équivalent dans notre Système solaire, comme les « hot Jupiters » ou les « super-Terres ». JWST permet désormais la caractérisation détaillée des atmosphères exoplanétaires grâce à ses instruments spectroscopiques couvrant de 0,6 à 27 µm et sa grande surface collectrice de lumière (25 m²). Cette capacité permet de déterminer la composition moléculaire, la présence de nuages ou d’aérosols, le profil pression–température et les processus physiques et chimiques à l'œuvre dans ces atmosphères.

La méthode principale utilisée est celle dite des transits, observant les variations de luminosité lors du passage de la planète devant son étoile ou derrière elle (éclipse secondaire). Néanmoins, l’observation sur toute la période orbitale (phase curve)—qui contient aussi un transit et deux éclipses—fournit encore plus d’informations. Avec les courbes de phase, le budget énergétique, la structure longitudinale, et la circulation atmosphérique peuvent être directement observés. JWST a déjà obtenu des données en courbes de phase d’une qualité exceptionnelle. Beaucoup de ces ensembles de données sont désormais accessibles au public et contiennent une mine d’informations, mais ils ne sont que partiellement exploités. La durée de ces observations, la finesse des signaux très faibles (quelques dizaines de ppm), et la présence d’effets instrumentaux plus subtiles rendent l’exploitation de ces données plus complexe.

La thèse proposée se concentrera d’abord sur l’étude et la correction de ces effets instrumentaux, puis sur l’extraction des propriétés atmosphériques avec le logiciel TauREx (https://taurex.space/), sous la co-supervision de Quentin Changeat (Université de Groningen) et Pierre-Olivier Langage (CEA Paris-Saclay). Cette thèse participera à la préparation de l’exploitation scientifique de la mission ESA Ariel (lancement prévu en 2031), entièrement dédiée à l’étude des atmosphères exoplanétaires et qui pourrait observer près de 50 courbes de phase.

Magnéto-convection des étoiles de type solaire: émergence du flux et origine des taches stellaires

Le Soleil et les étoiles de type solaire possèdent un magnétisme riche et variable. Nous avons pu mettre en évidence dans nos travaux récents sur les dynamos turbulentes convectives de ce type d' étoiles, une histoire magnéto-rotationelle de leur évolution séculaire. Les étoiles naissent active avec des cycles magnétiques courts, puis en décélérant par le freinage du à leur vent de particules magnétisé, leur cycle magnétique s'allonge pour devenir commensurable à celui du Soleil (d'une durée de 11 ans) et enfin pour les étoiles vivant suffisamment longtemps finir avec une perte de cycle et une rotation dite anti-solaire (équateur lent/poles rapides). L'accord avec les observations est excellent mais il nous manque un élément essentiel pour conclure: Quel role jouent les taches solaires/stellaires dans l'organisation du magnétisme de ces étoiles et sont-elles nécessaires à l'apparition d'un cycle magnétique, ce qui s'appelle "le paradox des dynamos cycliques sans tache". En effet, nos simulations HPC de dynamo solaire n'ont pas la résolution angulaire pour résoudre les taches et pourtant nous observons bien des cycles dans nos simulation de dynamos stellaires pour des nombres de Rossby < 1. Dès lors les taches sont-elle une simple manifestations de surface d'une auto-organisation interne du magnétisme cyclique de ces étoiles, ou jouent-elle un rôle déterminant. De plus, comment l'émergence de flux en latitude et la taille et intensité des taches se formant à la surface évoluent ils au cours de l'évolution magnéto-rotationelle de ces étoiles? Pour répondre à cette question essentielle en magnétisme des étoiles et du Soleil, il faut développer de nouvelles simulations HPC de dynamo stellaire en soutien aux missions spatiales Solar Orbiter et PLATO pour lesquelles nous sommes directement impliqués, permettant de s'approcher plus près de la surface et ainsi de mieux décrire le processus d'émergence de flux magnétique et la possible formation de taches solaires. Des tests récents montrant que des concentrations magnétiques inhibant la convection de surface localement se forment ab-initio dans des simulations avec un nombre de Reynolds magnétique plus grand et une convection de surface plus petites échelles nous encourage fortement à poursuivre ce projet au delà de l'ERC Whole Sun (finissant en Avril 2026). Grace au code Dyablo-Whole Sun que nous co-développons avec le IRFU/Dedip, nous désirons étudier en détails la dynamo convective, l'émergence de flux magnétique et la formation auto-cohérente de taches résolues, en utilisant sa capacité de raffinement de maillage adaptative et en variant les paramètres globaux stellaire comme le taux de rotation, l'épaisseur de la zone convective, et l'intensité de la convection de surface, afin de déterminer comment leur nombre, morphologie et latitude d'émergence changent et s'ils contribuent ou non à la fermeture de la boucle dynamo cyclique.

Inférence cosmologique à partir de l'abondance des amas de galaxies détectés par cisaillement gravitationnel sur les données de la mission Euclid

Les amas de galaxies qui se forment à l’intersection des filaments de matière, sont de très bons traceurs de la distribution de matière de l’Univers et sont une précieuse source d’information pour la Cosmologie.
La sensibilité de la mission spatiale Euclid lancée en 2023 permet une détection aveugle des amas de galaxies à partir des effets de lentille gravitationnelle faibles i.e. étroitement liés à la masse totale projetée. Ce point combiné avec la taille du relevé grand champ (14 000 deg2) devrait permettre de construire un catalogue d’amas de galaxies unique de par sa taille et ses caractéristiques de sélection. Contrairement aux catalogues d’amas de galaxies construits jusqu’à maintenant qui sont détectés par leur contenu baryonique (e.g. via le contenu en gas de l’amas en X ou via l’effet Sunyaev-Zeldovich aux longueurs d’ondes millimétriques ou encore via les emissions dans le visible des galaxies), le catalogue d’amas détectés à partir du cisaillement gravitationnel est directement lié à la masse totale des amas et de ce fait vraiment représentatif de la vraie population d’amas de galaxies ce qui est un atout pour les études sur les amas de galaxies et la cosmologie.
Dans ce cadre, nous avons mis au point une méthode multi-échelle conçue pour détecter des amas de galaxies en s'appuyant uniquement sur leurs effets de lentille gravitationnelle faibles. Cette méthode a été pré-sélectionnée pour produire le catalogue d’amas de galaxies à partir des données de cisaillement de la mission Euclid.
Le projet de thèse a pour but de construire et de caractériser ce catalogue d’amas de galaxies à partir des données collectées lors de la première année d’observation de la mission Euclid (DR1) en s’appuyant sur cette méthode de detection. Le ou la candidat(e) dérivera ensuite des contraintes cosmologiques à partir de la modélisation de l’abondance des amas, en utilisant l’approche Bayésienne classique. Il explorera également l’apport des méthodes d’apprentissage de type SBI (Simulation-Based Inference) pour l’inférence cosmologique.

Inférence conjointe basée sur la simulation des cartes tSZ et de la lentille gravitationnelle faible d'Euclide

Contexte :
La mission Euclid fournira des mesures de lentille gravitationnelle faible (weak lensing, WL) d’une précision sans précédent, susceptibles de révolutionner notre compréhension de l’Univers. Cependant, à mesure que les incertitudes statistiques diminuent, le contrôle des effets systématiques devient d’autant plus crucial. Parmi ceux-ci, la rétroaction baryonique — qui redistribue le gaz au sein des galaxies et des amas — demeure l’un des principaux effets systématiques astrophysiques limitant la capacité d’Euclid à contraindre l’équation d’état de l’énergie noire. Comprendre la rétroaction baryonique représente aujourd’hui l’un des défis les plus urgents de la cosmologie.

L’effet Sunyaev-Zel’dovich thermique (tSZ) offre une fenêtre unique sur la composante baryonique de l’Univers. Cet effet provient de la diffusion des photons du fond diffus cosmologique (CMB) par les électrons chauds présents dans les groupes et amas de galaxies. Ce même gaz chaud, redistribué par la rétroaction baryonique, est particulièrement pertinent pour la cosmologie des lentilles faibles. La corrélation croisée entre le signal tSZ et le signal WL permet d’étudier la manière dont les baryons tracent et modifient les structures cosmiques, offrant ainsi des contraintes conjointes sur la cosmologie et la physique baryonique.

La plupart des analyses actuelles du signal croisé tSZ–WL reposent sur l’ajustement des spectres de puissance angulaires en supposant une vraisemblance gaussienne. Cependant, le signal tSZ est fortement non gaussien, car il trace les structures massives de l’Univers, et les spectres de puissance ne capturent qu’une partie limitée de l’information contenue dans les données. Pour exploiter pleinement le potentiel scientifique des analyses tSZ–WL, il est donc essentiel de dépasser ces hypothèses simplificatrices.

Sujet de thèse :
L’objectif de ce projet de thèse est de développer un nouveau cadre d’analyse, basé sur des simulations, pour étudier conjointement les signaux tSZ et WL issus d’Euclid. Ce cadre combinera des modèles physiques directs (forward models) avec des techniques statistiques et d’apprentissage automatique avancées, afin de fournir des mesures précises de la rétroaction baryonique et des paramètres cosmologiques. En analysant conjointement les signaux tSZ et WL, ce projet renforcera la précision des analyses cosmologiques d’Euclid et améliorera notre compréhension de la connexion entre matière noire et baryons.

Cosmologie avec la forêt Lyman-alpha du grand relevé cosmologique DESI.

La distribution de matière à grande échelle dans l'univers est utilisée pour tester nos modèles cosmologiques. On utilise pour cela avant tout les oscillations acoustiques de baryons (BAO) mesurée dans la fonction de corrélation à deux points de cette distribution. Cependant l'ensemble du champ de matière contient des informations à diverses échelles, qui permettent de mieux contraindre nos modèles que le BAO seul. A redshift z > 2, la meilleure sonde de cette distribution de matière est la forêt Lyman-alpha, un ensemble de raies d'absorption mesurées dans les spectres de sources lointaines. Le grand relevé spectroscopique DESI a collecté environ un million de ces spectres. Avec un lot partiel de données "DR2", nous avons déjà mesuré le BAO avec une précision de 0.7%, contraignant ainsi fortement le taux d'expansion de l'univers au cours des premiers milliards d'années de son évolution.

Le but de cette thèse est d'exploiter l'ensemble complet des données Lyman-alpha à grande échelle de DESI pour obtenir les meilleures contraintes possibles sur les modèles cosmologiques. Pour cela, dans une première étape l'étudiant appliquera pour la première fois une méthode dite de reconstruction, qui permet d'améliorer la précision de la mesure du BAO, en exploitant l'information du champ de densité de matière. Dans la suite de sa thèse, en lien avec des efforts similaires menés dans notre groupe avec les galaxies de DESI, il implémentera une nouvelle méthode dite de simulation-based inference: dans cette approche l'ensemble du champ de matière est utilisé directement pour estimer les paramètres cosmologiques en particulier l'énergie noire. L'étudiant apportera ainsi une pierre importante aux mesures cosmologiques finales de DESI avec le Lyman-alpha.

Cette thèse sera de préférence précédée d'un stage.

Estimation impartiale du cisaillement pour Euclid avec modélisation automatiquement différentiable et accélérée par GPU

Le projet de thèse porte sur la mesure sans biais du cisaillement gravitationnel faible, un effet dû à la déviation de la lumière des galaxies par la matière présente sur la ligne de visée. Cette technique est essentielle pour étudier la matière noire, l’énergie noire et la gravité, et constitue un pilier de la mission spatiale Euclid, lancée en 2023. Les méthodes classiques de mesure des formes de galaxies introduisent des biais systématiques dans l’estimation du cisaillement. L’objectif de cette thèse est de développer une approche innovante de modélisation directe permettant d’inférer le cisaillement sans passer par la mesure de forme, en simulant des images de galaxies réalistes à l’aide d’architectures d’apprentissage profond. Le doctorant participera à l’adaptation de cette méthode aux données réelles d’Euclid, en intégrant la complexité du système de traitement des données (SGS) et en optimisant le calcul sur GPU et supercalculateurs. Ce travail s’inscrit dans un contexte très dynamique, coïncidant avec la première diffusion publique des données d’Euclid prévue pour 2026. Les résultats attendus sont une estimation du cisaillement plus précise et robuste, ouvrant la voie à des analyses cosmologiques de nouvelle génération.

De la toile cosmique aux galaxies : retracer l'accrétion de gaz à haut redshift par les observation et les simulations

Cette thèse vise à développer une compréhension intégrée des galaxies à haut redshift au sein de leurs structures à grande échelle. Nous étudierons comment les mécanismes de rétroaction (« feedback ») et l'activité nucléaire de ces galaxies affectent leur environnement, en couplant des données observationnelles avec des simulations cosmologiques.
Nos objectifs principaux sont de :
1. Faire progresser les capacités de diagnostic pour l'étude du gaz diffus.
2. Tester et valider les paradigmes actuels sur l'accrétion de gaz.
Notre travail observationnel s'appuiera sur de nouvelles données du télescope Keck et du Very Large Telescope concernant les halos Lyman-alpha autour de groupes et amas massifs à z>2, dont nous disposons déjà en grande partie. Nous intégrerons également les données de plus en plus nombreuses du télescope spatial James Webb (JWST) sur les mêmes cibles, afin de révéler les propriétés des galaxies et de leurs noyaux actifs (AGN).
Sur le plan théorique, nous utiliserons les résultats publics des simulations TNG100, HORIZON5 et CALIBRE pour comprendre l'évolution des galaxies, en tirant des enseignements des succès comme des échecs lors de la comparaison avec les observations. In fine, cela nous permettra de guider le développement de nouvelles simulations haute fidélité du milieu circum-galactique, conçues spécifiquement pour contraindre les processus d'accrétion de gaz.
Cette recherche soutient directement notre objectif à long terme de nous préparer à l'exploitation de BlueMUSE, un nouvel instrument en cours de construction pour le VLT auquel nous participons. Elle permettra également de répondre à l'une des questions ouvertes majeures en astrophysique, telle qu'identifiée par le rapport décennal Astro2020.

L'apprentissage automatique pour l'analyse cosmologique des images de lentille gravitationnelle faible provenant du satellite Euclid

L'effet de lentille gravitationnelle faible, la distorsion des images de galaxies à haut redshift due aux structures de matière au long de la ligne de visée à grande échelle, est l'un des outils les plus prometteurs de la cosmologie pour sonder le secteur sombre de l'Univers. Le satellite spatial européen Euclide mesurera les paramètres cosmologiques avec une précision sans précédent. Pour atteindre cet objectif ambitieux, un certain nombre de sources d’erreurs systématiques doivent être quantifiées et comprises. L’une des principales origines des biais est liée à la détection des galaxies. Il existe une forte dépendance à la densité de galaxies locale et au fait que l'émission lumineuse de la galaxie chevauche les objets proches. Si elles ne sont pas traitées correctement, de telles galaxies « mélangées » (blended) biaiseront fortement toute mesure ultérieure de distorsions d'image à faible lentille.
L'objectif de cette thèse est de quanti?er et de corriger les biais de détection des lentilles faibles, notamment dus au mélange. À cette fin, des algorithmes modernes d’apprentissage automatique et profond, y compris des techniques d’auto-différenciation, seront utilisés. Ces techniques permettent une estimation très efficace de la sensibilité des biais liés aux propriétés des galaxies et des levés sans qu'il soit nécessaire de créer un grand nombre de simulations. L'étudiant effectuera des analyses d'inférence de paramètres cosmologiques des données de lentille faible d'Euclide. Les corrections des biais développées dans cette thèse seront inclutes à prior dans la mesure de formes de galaxies, où à postérior â l'aide de paramètres de nuisance, afin d'obtenir des mesures de paramètres cosmologiques avec une fiabilitlé requise pour une cosmologie de précision.

Inférence des paramètres cosmologiques à l’aide de prédictions théoriques des statistiques en ondelettes.

Lancé en 2023, le satellite Euclid observe le ciel dans les longueurs d'onde optiques et infrarouges pour cartifier la structure à grande échelle de l'Univers avec une précision inédite. Un pilier fondamental de sa mission est la mesure du cisaillement gravitationnel faible — de subtiles distorsions dans la forme des galaxies lointaines. Ce phénomène constitue une sonde cosmologique puissante, capable de retracer l'évolution de la matière noire et d'aider à distinguer les théories sur l'énergie noire de celles de la gravité modifiée. Traditionnellement, les cosmologues analysent les données de cisaillement faible à l'aide de statistiques du second ordre (comme le spectre de puissance) couplées à un modèle de vraisemblance gaussien. Cette approche établie rencontre cependant des défis significatifs :
- Perte d'information : Les statistiques du second ordre ne capturent toute l'information disponible que si la distribution de matière sous-jacente est gaussienne. En réalité, la toile cosmique est une structure complexe, composée d'amas, de filaments et de vides, ce qui rend cette approche intrinsèquement incomplète.
- Covariance complexe : La méthode nécessite l'estimation d'une matrice de covariance, qui est à la fois dépendante de la cosmologie et non-gaussienne. Ceci exige de réaliser des milliers de simulations numériques de type N-corps, extrêmement coûteuses en calcul, pour chaque modèle cosmologique, un effort souvent prohibitif.
- Effets systématiques : L'intégration des complications observationnelles — telles que les masques de survey, l'alignement intrinsèque des galaxies, et les effets de rétroaction baryonique — dans ce cadre théorique est notoirement difficile.

Face à ces limitations, un nouveau paradigme a émergé : l'inférence sans vraisemblance par modélisation directe (forward modelling). Cette technique contourne le besoin d'une matrice de covariance en comparant directement les données observées à des observables synthétiques générés par un modèle direct (forward model). Ses avantages sont profonds : elle élimine le fardeau de stockage et de calcul lié aux vastes ensembles de simulations, intègre naturellement l'information statistique d'ordre supérieur, et permet d'inclure de manière transparente les effets systématiques. Cependant, cette nouvelle méthode présente ses propres obstacles : elle demande des ressources de calcul (GPU) immenses pour traiter des surveys de l'envergure d'Euclide, et ses conclusions ne sont aussi fiables que les simulations sur lesquelles elle s'appuie, ce qui peut mener à des débats circulaires si les simulations et les observations divergent.

Une percée récente (Tinnaneni Sreekanth, 2024) ouvre une voie prometteuse. Ces travaux fournissent le premier cadre théorique permettant de prédire directement les principales statistiques en ondelettes des cartes de convergence — exactement le type de cartes qu'Euclide produira — pour un jeu de paramètres cosmologiques donné. Il a été démontré dans Ajani et al. (2021) que la norme L1 des coefficients en ondelettes est extrêmement puissante pour contraindre les paramètres cosmologiques. Cette innovation promet d'exploiter la puissance des statistiques non-gaussiennes avancées sans le surcoût computationnel traditionnel, ouvrant potentiellement la voie à une nouvelle ère de cosmologie de précision.
Nous avons démontré que cette prédiction théorique peut être utilisée pour construire un émulateur hautement efficace (Tinnaneni Sreekanth et al., 2025), accélérant considérablement le calcul de ces statistiques non-gaussiennes. Il est crucial de noter qu'à son stade actuel, cet émulateur ne fournit que la statistique moyenne et n'inclut pas la variance cosmique. En l'état, il ne peut donc pas encore être utilisé seul pour une inférence statistique complète.

Objectif de cette thèse de doctorat:
Cette thèse de doctorat vise à révolutionner l'analyse des données de cisaillement faible en construisant un cadre complet et intégré pour l'inférence cosmologique sans vraisemblance. Le projet commence par adresser le défi fondamental de la stochasticité : nous calculerons d'abord la covariance théorique des statistiques en ondelettes, fournissant une description mathématique rigoureuse de leur incertitude. Ce modèle sera ensuite intégré dans un générateur de cartes stochastiques, créant ainsi des données synthétiques réalistes qui capturent la variabilité intrinsèque de l'Univers.
Pour garantir la robustesse de nos résultats, nous intégrerons une suite complète d'effets systématiques — tels que le bruit, les masques observationnels, les alignements intrinsèques et la physique baryonique — dans le modèle direct. Le pipeline complet sera intégré et validé au sein d'un cadre d'inférence basée sur les simulations, en testant rigoureusement sa capacité à retrouver des paramètres cosmologiques non biaisés. L'aboutissement de ce travail sera l'application de notre outil validé aux données de cisaillement faible d'Euclide, où nous exploiterons l'information non-gaussienne pour poser des contraintes compétitives sur l'énergie noire et la gravité modifiée.

References
V. Ajani, J.-L. Starck and V. Pettorino, "Starlet l1-norm for weak lensing cosmology", Astronomy and Astrophysics,  645, L11, 2021.
V. Tinnaneri Sreekanth, S. Codis, A. Barthelemy, and J.-L. Starck, "Theoretical wavelet l1-norm from one-point PDF prediction", Astronomy and Astrophysics,  691, id.A80, 2024.
V. Tinnaneri Sreekanth, J.-L. Starck and S. Codis, "Generative modeling of convergence maps based in LDT theoretical prediction", Astronomy and Astrophysics,  701, id.A170, 2025.

Top