Un cadre théorique pour la conception et la réalisation de robots sériels modulaires et reconfigurables axés sur les tâches, en vue d'un déploiement rapide.

Les innovations qui ont donné naissance aux robots industriels remontent aux années soixante et soixante-dix. Elles ont permis un déploiement massif de robots industriels qui ont transformé les ateliers, du moins dans certains secteurs de l'industrie tels que la construction automobile et certaines chaînes de production de masse.

Néanmoins, ces robots ne répondent pas totalement à d’autres applications qui sont apparues et se sont développées dans des domaines tels que la recherche en laboratoire, la robotique spatiale, la robotique médicale, l'inspection et la maintenance, la robotique agricole, la robotique de service et, bien sûr, les humanoïdes. Un petit nombre de ces secteurs ont connu un déploiement et une commercialisation à grande échelle de systèmes robotiques, mais la plupart avancent de manière lente et incrémentale.

Une question que l’on peut se poser est de savoir à quoi cela est dû ? Est-ce parce que le matériel n’est pas adapté (capacités physiques insuffisantes pour générer les forces et effectuer les mouvements nécessaires), parce que le logiciel n’est pas suffisamment performant (contrôle commande, perception, décision, apprentissage, etc.), ou parce qu’on ne dispose pas de paradigmes de conception capables de répondre aux besoin de ces applications (possibilités de conception rapide et sur mesure de nouveaux robots) ?

L'explosion sans précédent de la science des données, de l'apprentissage automatique et de l'IA dans tous les domaines de la science, de la technologie et de la société est souvent perçue comme une solution évidente pour répondre au problème, et une évolution radicale se profile ou est anticipée avec la promesse d'autonomiser les prochaines générations de robots grâce à l'IA (à la fois prédictive et générative). En conséquence, on a souvent tendance à apporter une attention particulière à l'aspect logiciel (apprentissage, aide à la décision, codage etc.), sans doute au détriment de capacités physiques améliorées (matériel) et de nouveaux concepts (paradigmes de conception). Il est pourtant clair que les aspects cognitifs de la robotique, notamment l'apprentissage, le contrôle et l'aide à la décision, ne pourront apporter une solution que si des dispositifs adaptés sont disponibles pour répondre aux besoins des diverses tâches que l’on souhaite robotiser, ce qui suppose des méthodologies de conception et un matériel adaptés.

L'objectif de cette thèse est ainsi de se concentrer sur les paradigmes de conception et le hardware, et plus spécifiquement sur la conception optimale de robots série utilisant une famille de « modules » standardisés dont l’agencement sera optimisé pour des familles de tâches données qui ne peuvent pas être accomplies par un robot industriel du marché. L’ambition de ce travail est de permettre de passer d’un catalogue donné de robots à la conception très rapide de solutions robotisées sur mesure.

Le candidat ou la candidate retenu(e) s'inscrira à l’Ecole Doctorale Mathématiques, STIC, de Nantes Université (ED-MASTIC) et sera accueilli(e) pendant trois ans au Service de Robotique Interactive du CEA-LIST à Palaiseau. Les professeurs Clément Gosselin (Laval) et Yannick Aoustin (Nantes) assureront l'encadrement académique de cette thèse qui sera co-encadrée par le Dr Farzam Ranjbaran du CEA-LIST.

Nous envisageons l’opportunité de poursuivre cette collaboration grâce à une bourse postdoctorale d’un an à laquelle le candidat pourrait candidater, une fois les prérequis du doctorat validés. Cette bourse serait hébergée au Centre de recherche en robotique, vision et intelligence artificielle (CeRVIM) de l’Université Laval, au Canada.

Détection hors distribution avec des modèles de fondation de vision et des méthodes post-hoc

Le sujet de thèse se concentre sur l'amélioration de la fiabilité des modèles de deep learning, en particulier dans la détection des échantillons hors distribution (OoD), qui sont des points de données différents des données d'entraînement et peuvent entraîner des prédictions incorrectes. Cela est particulièrement important dans des domaines critiques comme la santé et les véhicules autonomes, où les erreurs peuvent avoir des conséquences graves. La recherche exploite les modèles de base de la vision (VFMs) comme CLIP et DINO, qui ont révolutionné la vision par ordinateur en permettant l'apprentissage à partir de données limitées. Le travail proposé vise à développer des méthodes qui maintiennent la robustesse de ces modèles pendant le fine-tuning, garantissant qu'ils peuvent toujours détecter efficacement les échantillons OoD. En outre, la thèse explorera des solutions pour gérer les changements de distribution des données au fil du temps, un défi courant dans les applications du monde réel. Les résultats attendus incluent de nouvelles techniques pour la détection OoD et des méthodes adaptatives pour les environnements dynamiques, améliorant ainsi la sécurité et la fiabilité des systèmes d'IA dans des scénarios pratiques.

Contrôle de manipulateur mobile à haute mobilité en contexte dynamique

Le développement de manipulateur mobile capable de capacités d’adaptation est porteur d’avancées importantes pour le développement de nouveaux moyens de production, que ce soit dans des applications industrielles ou agricoles. En effet de telles technologies permettent de réaliser des tâches répétitives avec précision et sans contraintes liées à la limitation de l’espace de travail. Néanmoins, l’efficience de tels robots est soumise à leur adaptation à la variabilité du contexte d’évolution et de la tâche à réaliser. Aussi, cette thèse propose de concevoir des mécanismes d’adaptation des comportements sensori-moteurs pour ce type de robots, afin de garantir une bonne adéquation de leurs actions en fonction de la situation. Elle envisage d’étendre les capacités de reconfiguration des approches de perception et de commande par l’apport de l’Intelligence Artificielle, ici comprise au sens de l’apprentissage profond. Il s’agira de développer de nouvelles architectures décisionnelles capables d’optimiser les comportements robotiques pour la manipulation mobile dans des contextes évolutifs (notamment intérieur-extérieur) et la réalisation de plusieurs travaux de précision.

Top