Interactions entre les cellules endothéliales et les fibroblastes dans les ulcères du pied diabétique : déchiffrer la communication intercellulaire responsable de la persistance des plaies chroniques
L’ulcère du pied diabétique (UPD), complication sévère du diabète touchant près de 18,6 millions de personnes dans le monde chaque année, demeure associé à des taux élevés d’amputation et de mortalité. Comme d’autres plaies chroniques, l’UPD se caractérise par une cicatrisation déficiente, conséquence d’une dérégulation des cascades de signalisation et des comportements cellulaires qui assurent normalement la fermeture rapide de la barrière cutanée. Parmi les acteurs clés de ce processus, les fibroblastes et les cellules endothéliales occupent une place centrale au cours des phases de prolifération et de remodelage de la cicatrisation – des étapes profondément altérées dans le cadre des plaies chroniques. Bien que la communication endothélio-fibroblastique soit reconnue comme un déterminant essentiel lors de la cicatrisation normale, les mécanismes gouvernant ces interactions dans le contexte de l’UPD demeurent mal compris.
L’objectif principal de ce projet de thèse est de caractériser les interactions entre cellules endothéliales et fibroblastes qui contribuent à la chronicité de l’UPD. Une attention particulière sera portée aux microARN (miARN) associés aux vésicules extracellulaires, véritables médiateurs de la communication intercellulaire via la modulation de l’expression génique des cellules cibles. Grâce à l’étude du répertoire des miARN pro- et anti-cicatrisants, ce projet vise à identifier de nouvelles cibles moléculaires et des stratégies thérapeutiques innovantes destinées à améliorer la cicatrisation de l’ulcère du pied diabétique.
Effets combinés de l’hypoxie et de la mécanique matricielle sur la physiopathologie de la fibrose pulmonaire
La fibrose pulmonaire idiopathique (FPI) est une maladie chronique, incurable et mortelle, caractérisée par une altération de la barrière alvéolo-capillaire, un dépôt excessif de matrice extracellulaire (MEC), une hypoxie locale et une rigidité accrue du tissu pulmonaire. Ces modifications perturbent les interactions cellulaires et favorisent la transition vers un état pro-fibrosant. Ce projet de thèse vise à comprendre comment l’environnement mécanique (rigidité tissulaire) et chimique (hypoxie) influence le comportement des cellules pulmonaires (plasticité, phénotype) et leurs communications intercellulaires (paracrines et juxtacrines), en conditions in vitro contrôlées. Pour cela, des supports biomimétiques à rigidité variable seront développés, adaptés à la co-culture des principaux types cellulaires de la barrière alvéolo-capillaire. L’étude portera sur la réponse cellulaire à la rigidité et à l’hypoxie, l’analyse du sécrétome, du protéome et l’impact de la communication cellulaire. L’objectif est d’identifier des facteurs pro-fibrosants mécano- et chimio-dépendants, afin de mieux comprendre les mécanismes de progression de la FPI et de proposer de nouvelles cibles thérapeutiques et approches régénératives.
PtSeipin: un pont entre biogenèse et dégradation des gouttelettes lipidiques chez la diatomée Phaeodactylum tricornutum
Les microalgues regroupent une grande diversité d’organismes et suscitent un intérêt croissant en raison de leur capacité à produire des biomolécules d’intérêt industriel et biotechnologique. En particulier, elles peuvent accumuler de l’huile sous forme de gouttelettes lipidiques (LD, lipid droplets) en réponse à des stress abiotiques tels que la carence en azote. Cette accumulation d’huile représente un fort potentiel pour la production de biocarburants.
Nous avons récemment montré que l’inactivation du gène codant la Seipine, une protéine impliquée dans la biogenèse des LD, entraîne une forte accumulation d’huile chez la diatomée Phaeodactylum tricornutum. De plus, cette accumulation semble liée à une absence de dégradation des LD dans les mutants dépourvus de Seipine. Ces résultats suggèrent que, chez cette diatomée, les LD sont programmées pour être dégradées dès leur formation et que l’inhibition de la dégradation pourrait être une stratégie intéressante pour augmenter la production d’huile. Le présent projet vise à élucider les mécanismes de dégradation des LD et, plus particulièrement, les liens entre leur biogenèse et leur dégradation, ce qui permettra d'identifierde nouvelles cibles d'intérêt. Trois axes principaux seront développés :
1. Identifier les partenaires de PtSeipine impliqués dans la dégradation des LD, en combinant une approche ciblée (protéines candidates) et une approche globale (sans a priori).
2. Déterminer les mécanismes de dégradation des LD altérés dans les mutants PtSeipin KO, en combinant des observations en microscopie électronique avec des analyses transcriptomiques et protéomiques.
3. Comprendre l’utilisation que les microalgues font de l’huile lors de la phase de sortie de stress, à l’aide d’approches de fluxomique.
Combinaison des radiations ionisantes et de molécules radio-sensibilisantes dans des modèles de cancer du sein
Le programme proposé vise à évaluer l'efficacité de molécules améliorant les effets de la radiothérapie, dans des modèles de cancer du sein. Des inhibiteurs de la voie du Base Excision Repair feront l'objet d'un test d'efficacité de radiopotentialisation dans les modèles in vitro et in vivo complémentaires.
Les inhibiteurs pressentis font déjà l’objet de recherches in vitro, au sein du laboratoire et chez des collaborateurs. Nous avons montré que l’inhibition des mécanismes étudiés permet une diminution de la réparation des cassures de l’ADN suivant un stress génotoxique. Durant ce projet, nous évaluerons les effets des inhibiteurs sur les réparations des dommages à l’ADN induits par les irradiations de différents types (conventionnelle, ultra haut débit de dose, voire débit de dose extrême), ainsi que les mécanismes associés.
Une variabilité de réponse aux combinaisons thérapeutiques est très fréquemment observée lors du passage des modèles in vitro aux modèles in vivo. Ainsi nous évaluerons les inhibiteurs d’une part sur des modèles de lignées cellulaires bien caractérisés au laboratoire, et correspondant à différents sous-types de cancer du sein. D’autre part, les études seront complétées par une validation des effets relevés in vitro sur un modèle murin de cancer du sein. Ce modèle de xénogreffes, développé dans des animaux immunocompétents, permet un suivi clinique, histologique, et immunitaire des animaux et de leurs tumeurs afin de confirmer l'intérêt des molécules pour une application thérapeutique en appui à la radiothérapie.
Ce programme bénéficiera des collaborations du laboratoire avec des physiciens et des chimistes, et des installations expérimentales et plateformes de l'IRCM (irradiation, expérimentation animale, microscopie, cytométrie, etc...)