ÉTUDE DE L'HÉTÉROGÉNÉITÉ CONFORMATIONNELLE ET DE LA DYNAMIQUE DES MARQUEURS FLUORESCENTS DE TYPE FAST

Les protéines fluorescentes, et en particulier les protéines fluorescentes réversiblement commutables (RSFPs), ont révolutionné l’imagerie par fluorescence avancée, ouvrant la voie à des applications comme la microscopie à super-résolution. Parmi les alternatives émergentes, les rapporteurs basés sur des fluorogènes, tels que les systèmes FAST (Fluorescence Activating and Absorption Shifting Tag) se distinguent par leur grande photostabilité et leur polyvalence. FAST fonctionne par liaison non covalente d’une petite protéine modifiée à un fluorogène organique, ce qui induit la fluorescence et permet un suivi en temps réel sans maturation du chromophore. Cependant, des défis subsistent dans l’optimisation de ces systèmes en raison d’une compréhension limitée des interactions fluorogène-protéine, des dynamiques de liaison et des comportements photophysiques sous illumination. Ce projet de thèse vise à caractériser les modes de liaison des systèmes FAST à une résolution atomique à l'aide de la spectroscopie RMN multidimensionnelle, de la cristallographie aux rayons X et de la spectroscopie UV-visible. Des résultats récents suggèrent que les fluorogènes peuvent adopter plusieurs modes de liaison et que de légères modifications chimiques affectent les cinétiques de liaison et l’intensité de la fluorescence. En intégrant un dispositif d'illumination laser dans les investigations RMN, nous explorerons plus avant comment l'absorption lumineuse influence la conformation et la dynamique des fluorogènes. Les connaissances ainsi acquises permettront de concevoir de manière rationnelle des variants optimisés de FAST, améliorant leurs performances pour des applications spécifiques en microscopie et faisant progresser le domaine de l’imagerie par fluorescence.

Dynamique et désordre molèculaire dans la machinerie de réplication du virus SRAS CoV 2

La protéine de nucléocapside (N) du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) est essentielle à la réplication du génome, à l'encapsidation du génome viral et à la régulation de la transcription des gènes. La protéine est fortement désordonnée, comprenant deux terminaisons désordonnées et un domaine central désordonné qui sont essentiels à sa fonction. Le domaine central contient un certain nombre de mutations importantes qui sont responsables de l'amélioration de l'aptitude virale et comprend une région qui est hyperphosphorylée pendant le cycle viral. La spectroscopie RMN est l'outil de choix pour étudier le comportement conformationnel des protéines intrinsèquement désordonnées, une classe abondante de protéines qui sont fonctionnelles sous leur forme désordonnée. Elles représentent 40 % du protéome et sont trop dynamiques pour être étudiées par cristallographie ou microscopie électronique. Le laboratoire hôte a développé un grand nombre d'outils uniques basés sur la RMN pour aider à comprendre la fonction de cette classe de protéines à une résolution atomique. Nous utiliserons la RMN, la RMN paramagnétique, la diffusion aux petits angles, le FRET de molécule unique et la microscopie électronique, en combinaison avec la simulation de la dynamique moléculaire, pour décrire les interactions de N avec les protéines partenaires virales et l'ARN viral, pour décrire le processus d'encapsidation du génome viral par la protéine nucléocapside, ainsi que l'impact des mutations présentes dans les variantes de la préoccupation. Les résultats seront corrélés avec la microscopie optique et électronique, réalisée en collaboration.

Élucider le mécanisme de la fixation enzymatique du carbone

Le groupe Synchrotron de l'Institut de Biologie Structurale de Grenoble développe actuellement une méthode innovante appelée TR-FOX (Time-Resolved Functional Oscillation Crystallography). Cette technique vise à élucider, d’une part, la dynamique globale des macromolécules biologiques en fonctionnement, et d’autre part, les détails de leur mécanisme catalytique. Elle repose sur l’utilisation d’un injecteur capable de déposer sur l’échantillon cristallin, durant l'enregistrement des données de diffraction, une gouttelette de quelques nanolitres contenant les substrat et cofacteur de la réaction étudiée. Cela déclenche ainsi une réaction enzymatique au sein du cristal. Cette approche peut être couplée à la spectroscopie d'absorption UV-Visible pour caractériser plus précisément la cinétique de la réaction. L'objectif est d'obtenir une série de structures représentant différents états du cycle catalytique, permettant ainsi la réalisation d’un film moléculaire du fonctionnement de l’enzyme. Cette thèse poursuit un double objectif : (i) Améliorer et valider la méthode TR-FOX, (ii) Élucider le mécanisme catalytique de deux enzymes impliquées dans la fixation du carbone soit par capture soit par conversion du CO2.

Vers une meilleure compréhension des protéines membranaires grâce à l’IA

Malgré les avancées spectaculaires de l'intelligence artificielle (IA), notamment avec des outils tels qu’AlphaFold, la prédiction des structures des protéines membranaires demeure un défi majeur en biologie structurale. Ces protéines, qui représentent 30% du protéome et 60% des cibles thérapeutiques, sont encore largement sous-représentées dans la Protein Data Bank (PDB), avec seulement 3% de structures résolues. Cette rareté s’explique par la difficulté à maintenir leur état natif dans un environnement amphiphile, ce qui complique leur étude, notamment avec les techniques structurales classiques.

Ce projet de thèse a pour objectif de lever ces obstacles en combinant les capacités prédictives d'AlphaFold avec des données expérimentales de diffusion aux petits angles (SAXS/SANS), obtenues en condition physiologique. L’étude se concentrera sur la protéine translocatrice TSPO, un marqueur clé en neuro-imagerie de plusieurs pathologies graves (cancers, maladies neurodégénératives) en raison de sa forte affinité pour divers ligands pharmacologiques.

Ce travail s’articulera autour de la prédiction de la structure de TSPO en présence et en absence de ligands, de l’acquisition de données SAXS/SANS du complexe TSPO/amphiphiles et de l’affinement des modèles grâce à des outils de modélisation avancée (MolPlay, Chai-1) et des simulations de dynamique moléculaire. En approfondissant la compréhension de la structure et de la fonction de TSPO, ce projet pourrait conduire à la conception de nouveaux ligands pour le diagnostic et la thérapie.

Dynamique des protéines associées aux filaments nucléoprotéiques Rad51 - Implication dans la régulation de la recombinaison homologue

La recombinaison homologue (RH) est un mécanisme majeur de réparation des cassures double-brin de l'ADN induites par les radiations ionisantes. Une étape clé de la RH est la formation de filaments nucléoprotéique Rad51 sur l'ADN simple brin généré par ces cassures. Nous avons été les premiers a montré chez la levure qu'un contrôle strict de ces filaments est essentiel afin que la RH n'induise pas elle-même de réarrangements chromosomiques (eLife 2018, Cells 2021). Chez l'homme, les homologues fonctionnels des protéines de contrôle sont des suppresseurs de tumeurs. Ainsi, le contrôle de la RH semble être aussi important que le mécanisme de la RH lui-même. Notre projet implique l'utilisation de nouveaux outils moléculaires permettant une percée dans l'étude de ces contrôles. Nous utiliserons une version fonctionnelle fluorescente de la protéine Rad51 développée pour la première fois par nos collaborateurs A. Taddei (Institut Curie), R. Guérois et F. Ochsenbein (I2BC, Joliot, CEA). Cette avancée majeure nous permettra d'observer l'influence des protéines de contrôle sur la réparation de l'ADN par microscopie dans des cellules vivantes. Nous avons également développé des modèles structuraux très précis des complexes de protéines de contrôle en association avec les filaments Rad51. Nous recourrons à une approche multidisciplinaire basée sur la génétique, la biologie moléculaire, la microscopie, la biochimie et la structure des protéines en collaboration avec le laboratoire de W.D. Heyer (University of California, Davis, USA), pour comprendre la fonction des régulateurs de la formation des filaments Rad51. La description de l’organisation de ces protéines avec les filaments Rad51 nous permettra de développer de nouvelles approches thérapeutiques.

Condensats et Chromatine : Comment la Séparation de Phase Façonne les Réponses des Plantes à la Température

Les plantes doivent adapter leur développement aux conditions environnementales, notamment à l'augmentation des températures due au changement climatique. Le stress thermique impacte significativement la physiologie des plantes, et pour atténuer ces effets, elles ont développé des réponses au choc thermique (HSR), avec le facteur de choc thermique A1a (HSFA1a) jouant le rôle de régulateur principal chez Arabidopsis thaliana. En l'absence de stress, HSFA1a reste cytosolique et inactif, lié aux protéines de choc thermique (HSPs). Le stress thermique provoque la dissociation des HSPs, permettant la translocation nucléaire, la trimérisation, la liaison à la chromatine et l'activation des gènes de réponse au stress. Des études récentes révèlent qu'HSFA1a pourrait agir comme un facteur de transcription pionnier pour accéder à des régions chromatiniennes fermées et initier la HSR. De plus, des résultats préliminaires suggèrent qu'HSFA1a subit une séparation de phase liquide-liquide (LLPS) pour former des condensats nucléaires régulant l'expression des gènes. Ce projet vise à 1) explorer l'effet de la température sur la structure et l'oligomérisation de HSFA1a, 2) étudier la LLPS de HSFA1a en présence et en absence d'ADN, 3) caractériser l'activité pionnière de HSFA1a, et 4) déterminer l'importance physiologique de la LLPS dans la HSR.

Assemblage de la Nitrogénase: Qu'est ce qui distingue une nitrogénase d'une protéine échafaudage

Face aux crises du changement climatique et de la dégradation des sols, il est urgent de trouver des solutions pour réduire les émissions de gaz à effet de serre et la dépendance aux engrais azotés, tout en garantissant des rendements agricoles suffisants pour nourrir une population mondiale croissante. Une solution naturelle réside dans l'utilisation de la nitrogénase, une enzyme bactérienne capable de fixer l’azote atmosphérique en ammoniac, une forme directement assimilable par les plantes. Cependant, la biosynthèse de son cofacteur métallique, le FeMo-co, est un processus complexe nécessitant l’action coordonnée de nombreuses protéines.
L'objectif de cette thèse est de simplifier ce processus en étudiant des systèmes de maturation de la nitrogénase trouvés dans certains organismes, où un nombre réduit de protéines est utilisé, notamment grâce à la combinaison de plusieurs fonctions en une seule. Par une étude structurale et fonctionnelle comparative, nous chercherons à comprendre le rôle précis de chaque élément et comment simplifier ce système tout en conservant une activité optimale. Une telle avancée permettrait d’intégrer la capacité de fixation de l’azote dans les céréales, réduisant ainsi la dépendance aux engrais azotés.
Ce projet est issu d’une collaboration entre des équipes du CEA à l’Institut de Biologie Structurale et du CSIC à Madrid, reconnues pour leur expertise dans l'étude structurale des métalloprotéines ainsi que la biochimie et la génétique de la machinerie d’assemblage de la nitrogénase. Le doctorant bénéficiera d’un environnement scientifique de pointe, propice à une formation complète et enrichissante, pour une carrière future en recherche académique ou en R&D.

Top