Caractérisation du mécanisme moléculaire de détection des terres rares chez Pseudomonas putida et développement de biosenseurs associés.

Les terres rares (TR) sont des métaux largement utilisés dans les hautes technologies et la demande en TR devrait doubler d’ici 30 ans. L’extraction sélective et le recyclage des TR ont un triple enjeu, économique, technologique et écologique. Actuellement, moins de 1% des TR sont recyclées. De plus, les méthodes d’extraction sont fastidieuses et polluantes. Elles nécessitent plusieurs étapes avec acides ou solvants. La découverte en 2011 d’enzymes utilisant naturellement les TR légères a ouvert de nouvelles perspectives. Le développement de méthodes biosourcées pourrait être un élément clé pour débloquer les verrous de sélectivité et d’extraction actuels. Cette thèse s’inscrit dans la thématique biotechnologies de demain. Le but de cette thèse, est d’acquérir des données fondamentales sur le mécanisme moléculaire d’un système biologique de perception sélective des TR afin d’en tirer profit pour le développement d’un crible basé sur des biosenseurs répondant spécifiquement à certaines d’entre elles. Des techniques de biologie cellulaire, biochimie et d’analyse in silico avec des outils d’intelligence artificielle seront utilisées pour accomplir ce projet. Les résultats obtenus permettront d’identifier : 1) le mécanisme moléculaire de détection des TR et les facteurs influençant sa sélectivité, 2) les sites de liaison du régulateur et les gènes impliqués dans cette réponse, et 3) le développement à partir de 1) and 2) de biosenseurs robustes et sélectifs.

Nouvel outil de diagnostic rapide pour la septicémie : biopuce microfluidique pour la détection multicible par amplification isotherme

Le sepsis est l’une des principales causes de mortalité dans le monde qui résulte généralement d’une infection bactérienne mais peut être aussi causé par des virus, des champignons ou des parasites. Un diagnostic rapide est essentiel pour une prise en charge efficace et augmenter les chances de survie du patient. Il existe des solutions commerciales de détection d’acides nucléiques par qPCR capable de détecter plusieurs cibles. Cependant ces techniques sont limitées par le nombre de canaux de fluorescence disponible sur l’instrument ou par le nombre de chambre de lecture. Ces techniques d’amorces LAMP (amplification isotherme en temps réel) spécifiques sur un support solide tel que le COC ou le verre.
Les résultats attendus sont l’élaboration d’une biopuce permettant de détecter en temps réel et en quelques minutes fragmentent l’échantillon pour pouvoir être multiplexe, ce qui conduit à une perte de sensibilité.
Pour répondre à la question : comment détecter plusieurs cibles sans perdre en sensibilité ? Le doctorant devra réaliser dans une unique chambre réactionnelle, une détection multiplexe par régionalisation plusieurs ADN cibles, comprenant : le design et le choix des amorces, l’immobilisation des amorces par fonctionnalisation de surface, l’intégration en carte micro fluidique et le traitement des données pour la détection par fluorescence de sondes spécifiques des cibles.
Cette innovation technologique, permettra au doctorant d’acquérir de solides compétences dans divers domaines tels que la biologie moléculaire, la fonctionnalisation de surface, la modélisation et la simulation tout en s’inscrivant dans une équipe pluridisciplinaire.

Valorisation du biogaz par conversion du CO2 avec une biorafinerie avancée

L'utilisation de sources d'énergie renouvelables est un défi majeur pour les décennies à venir. L'une des façons de répondre à la demande croissante d'énergie est de valoriser les déchets. Parmi les différentes stratégies actuellement développées, la valorisation de biogaz issu des stations de méthanisation apparaît comme une approche prometteuse. En effet, le biogaz est composé majoritairement de méthane, mais aussi de CO2 (environ 40%) non utilisé. Le projet proposé ici est le reformage du biogaz en utilisant une source de biohydrogène renouvelable pour convertir le CO2 restant en CH4 pur. Nous proposons de mettre en place une bioraffinerie avancée autonome qui combinera la photoproduction d'hydrogène à partir de déchets de l'industrie laitière réalisée par la bactérie Rhodobacter capsulatus combiné avec le CO2 présent dans le biogaz dans une unité de biométhanation contenant une culture de Methanococcus maripaludis, une archée méthanogène capable de produire du CH4 à partir de CO2 et de H2 selon la réaction de Sabatier. Le but est de produire du méthane de façon non énergivore et respectueuse de l'environnement.

Top