Couplages photo et thermocatalytiques d’esters pour la synthèse d’alcènes biosourcés

L'accès facilité à l'énergie et aux matières premières carbonées offert par les ressources fossiles a permis une croissance rapide de la société. Néanmoins, l'épuisement attendu des ressources fossiles et le changement climatique exigent de se tourner vers un modèle plus durable. Les matières premières biosourcées sont une source prometteuse de carbone pour remplacer les produits pétrochimiques, mais elles nécessitent un changement radical du modèle actuel. Alors que le paradigme actuel repose sur la production d'énergie et de molécules organiques à haute valeur ajoutée par des étapes d'oxydation, un modèle basé sur l'économie circulaire du carbone, c'est-à-dire la transformation du CO2 et de la biomasse qui sont déjà des matériaux fortement oxydés, requiert le développement de nouvelles méthodologies de réduction, de désoxygénation et d'utilisation directe de liaisons oxygénées pour accéder à des molécules organiques fonctionnalisées et utiles.
En chimie organique, les réactions de couplage croisé représentent l'un des principaux outils permettant de créer des liaisons C–C. Cependant, elles reposent encore aujourd’hui principalement sur l'utilisation d'halogénures organiques comme électrophiles. Dans ce projet, le doctorant aura pour objectif de démontrer que les esters d'alkyle, facilement disponibles et abondants, peuvent servir d’électrophiles dans les réactions catalytiques de couplage croisé avec les alcènes. Les esters peuvent en effet être directement biosourcés ou facilement synthétisés à partir d'acides carboxyliques et d'alcools, diminuant ainsi l'impact environnemental de la formation de la liaison carbone-carbone.

METHODES DE SYNTHESE D’HETEROCYCLES AZOTES FONCTIONNALISES ET APPLICATION AUX MOLECULES ENERGETIQUES

L’objectif de la thèse est de mettre au point de nouvelles méthodes de synthèse et/ou de fonctionnalisation permettant d’obtenir des molécules hétérocycliques fonctionnalisées. Ces molécules sont basées sur des cycles aromatiques azotés à 5 ou 6 atomes (diazines, triazines, triazoles, tétrazoles…). Les structures visées permettent d’envisager de fortes densités et enthalpie de formation, tout en conservant une faible sensibilité aux agressions (thermiques, mécaniques…). Elles trouvent des applications dans le domaine énergétique, notamment la propulsion, les explosifs et les générateurs de gaz (airbags). De plus, ces composés hétérocycliques ainsi que les intermédiaires sont également structuralement proches de familles de produits biologiquement actifs et/ou susceptible de présenter des propriétés de fluorescence, comme l’a déjà montré une thèse précédente au laboratoire.

Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique

Depuis la fin de la seconde guerre mondiale, le recours aux plastiques pétrosourcés a favorisé l’émergence d’un modèle de consommations axé sur l’utilisation de produits jetables et la production mondiale de plastiques atteint désormais468 millions de tonnes par an. Ces plastiques, non biodégradables, sont à l’origine de nombreuses pollutions environnementales. Depuis les années 50, seulement 9 % de ces déchets ont fait l'objet d'un processus de recyclage. La majorité a été incinérée ou stockée en décharge. Dans le contexte actuel de cette économie linéaire, les enjeux sanitaires, climatiques et sociétaux rendent indispensable une transition vers une approche circulaire des matières. Cette évolution implique le développement de voies de recyclage à la fois efficaces et robustes. Alors que les voies de recyclage actuelles les plus répandues sont principalement des procédés mécaniques qui s’appliquent à des gisements particuliers de déchets, comme les bouteilles en plastique PET, le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. Ces procédés chimiques innovants permettent de récupérer la matière carbonée des plastiques pour en produire de nouveaux.
Le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux seront développés, et nous chercherons à comprendre leur mode de fonctionnement.

Synthèse et études des propriétés optiques de nanoparticules de graphène

Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).

Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier: des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous intéresserons particulièrement à des familles de nanoparticules allongées dans le but d'étudier comment la taille peut permettre d'observer et contrôler des processus multiexcitoniques dans ces matériaux. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.

Top