Etude de la spéciation du plutonium (IV) et (VI) en milieu concentré en nitrate, effet des fluorures

La thèse proposée en collaboration entre le CEA de Valduc et celui de Marcoule a pour but d’étudier la spéciation du plutonium dans un milieu fortement concentré en nitrate (1M à 12M [HNO3]) et en présence de fluorure (0 à 0,1M [F-]). Une réflexion sera conduite sur la prise en compte de ce milieu très éloigné d’une solution idéale pour la détermination et/ou l’estimation des constantes de complexation et ainsi prendre en compte la force ionique du milieu.
Dans une première phase, il s’agira de mettre en œuvre la spectroscopie d’absorption dans le domaine du visible afin de réaliser une étude de spéciation du plutonium visant à dénombrer les différents complexes et construire des diagrammes de spéciation. Dans un second temps, ces espèces devront faire l’objet de caractérisations structurales permettant ainsi d’identifier les espèces et décrire la chimie du plutonium dans ces milieux. Pour cela, de multiples techniques d’analyses et de caractérisations devront être utilisées : EXAFS, spectrométrie de masse, RMN, DRX monocristal, spectroscopie vibrationnelle (IR et Raman) par exemple. Une approche par modélisation pourra également être utilisée.
1er année au CEA de Valduc. 2-3 ième années au CEA de Marcoule (ATALANTE).

Développement de polyhydroxyuréthanes biosourcés à forte réactivité pour la substitution des isocyanates dans les polyuréthanes

Les polyuréthanes sont des matériaux thermodurcissables fortement impactant sur le plan environnemental, et sont notamment synthétisés à partir d’isocyanates, substances très dangereuses (toxiques, sensibilisantes, voire CMR pour certaines) et visées par des restrictions REACH. Dans ce contexte, les polyhydroxyuréthanes présentent plusieurs avantages : (i) plus facilement biosourçables que les PU conventionnels, (ii) leur synthèse ne fait pas intervenir d’isocyanate, mais (iii) permet au contraire la séquestration de CO2. Néanmoins, les précurseurs utilisés dans la synthèse des PHU (carbonates cycliques et amines) présentent des réactivités beaucoup plus faibles que les isocyanates, induisant des temps de réticulation actuellement incompatibles avec les températures et les cadences de production attendues pour ce type de matériau.
Plusieurs axes de recherche ont été proposés pour optimiser les cinétiques de réticulation des PHU et concernent l’identification (i) de nouveaux précurseurs carbonates cycliques et amines chimiquement substitués en positions a ou ß de la fonction réactive, et (ii) de nouveaux catalyseurs performants permettant d’activer les deux types de précurseurs utilisés dans la synthèse.
Dans ce contexte, le doctorant aura pour mission de synthétiser de nouveaux précurseurs carbonates cycliques et amines, et d’étudier leur réactivité, afin d’identifier les conditions les plus favorables pour la synthèse de PHU hautement réactifs. Les résultats acquis durant ces travaux seront ensuite analysés par des modèles d’Intelligence Artificielle symbolique développés au CEA.
Ce projet de thèse s’inscrit dans le cadre du projet PHURIOUS, financé par le PEPR DIADEM, qui prévoit de coupler des techniques de synthèse et de caractérisation haut-débit en chimie des polymères, et des outils numériques en amont (calculs DFT, dynamique moléculaire) et en aval (IA) des étapes de synthèse.

Impact d’un panache salin en nitrate de sodium sur les propriétés de confinement des matrices cimentaires vis-à-vis des radionucléides

Prédire par la modélisation la migration d’un toxique chimique radioactif à travers un matériau poreux connu de tous tel que le béton est un enjeu sociétal majeur ; en particulier dans le cadre des études liées au stockage des déchets issus de l’industrie nucléaire. Démontrer que le modèle proposé est robuste par des expériences en laboratoire ciblées en conditions physico-chimiques extrêmes est un des défis scientifiques proposé par le CEA dans le cadre de ce projet de recherche.
Le(la) doctorant(e) aura en charge de concevoir, de réaliser et de modéliser des essais expérimentaux de rétention et de diffusion de radionucléides d’intérêt en conditions cimentaires contrôlées ou perturbées par la présence des nitrates à très fortes concentrations. Le résultat principal attendu est la proposition d’un modèle prédictif couplant la chimie en condition de forte force ionique et le transport à travers des matrices cimentaires complexes validé par les données expérimentales acquises sur systèmes simples.
Entouré(e) par une équipe composée d’experts dans le domaine de la mesure et modélisation de la migration de radionucléides en milieu poreux, le/la doctorant(e) pourra développer ou approfondir ses compétences dans les domaines suivants: chimie, chimie analytique, physico-chimie, radiochimie et modélisation.

Amélioration d’explosifs par structuration des cristaux avec le procédé d’Evaporation Flash de Spray

De nouvelles voies de formulation de matériaux énergétiques sous forme de granulés de RDX enrobés d’ONTA et d’aluminium enrobé d’ONTA ont été identifiées dans la littérature chinoise et coréenne. La vitesse de détonation annoncée pour un explosif formulé à partir de granulés ONTA-HMX en rapport 1:1 molaire est supérieure à celle de l’octogène avec une sensibilité au choc proche de celle de l’ONTA, ce qui est prometteur dans l’optique de nouveaux explosifs à usage conventionnel.
Nous avons réalisé des simulations thermochimiques de compositions HMX-ONTA-Al à différents taux d’HMX qui montrent une nette amélioration des performances balistiques et de brisance par rapport à l’octogène et la composition PBXN109, sans dégrader les effets de souffle. Ces travaux mettent en exergue une nouvelle voie de formulation permettant d’allier une performance accrue des explosifs et une faible sensibilité (celle de l’ONTA).

La technique d’Evaporation Flash de Spray (SFE en anglais) développée par le laboratoire NS3E (Nanomatériaux pour des Systèmes Sous Sollicitations Extrêmes) sous tutelle de l’ISL, du CNRS et de l’Université de Strasbourg (UAR 3208) permet d’obtenir une structuration de l’explosif à l’échelle micrométrique à nanométrique. La thèse de Maxime Blanchon (2021-2024) a permis de produire les premières structures cœur-coquilles HMX-ONTA avec un ratio molaire 1:1. Les poudres obtenues présentent une sensibilité intermédiaire entre le HMX et l’ONTA avec des performances détoniques en accord avec la thermochimie, tout en conservant la capacité à détoner sous forme de charges de 3 mm de diamètre.
Ce travail constitue un sujet de thèse novateur et en rupture technologique avec ce qui se fait actuellement. Il est proposé de poursuivre ces travaux par une nouvelle thèse pour compléter la caractérisation des matériaux obtenus et les améliorer en jouant sur la nature des constituants et les balances en oxygène, en mesurant les caractéristiques détoniques à petite échelle sur des charges de dimensions centimétriques, en fonction de la densité, puis en étudiant leur comportement détonique (transition vers la détonation) via des expériences de laboratoire et des simulations.

Le travail est réalisé en collaboration entre le centre de Gramat (46) et l'institut de Saint Louis.
1ère année : analyse des expérimentations réalisées sur les structures de Maxime Blanchon, réflexion sur des améliorations des produits
2ième année : réalisation de nouvelles structures et caractérisation
3ième année : Rédaction du manuscrit

Nanotubes d'aluminosilicate fonctionnalisés pour la photocatalyse

L'augmentation de la demande en énergie et la nécessité de réduire l’utilisation des combustibles fossiles afin de limiter le réchauffement climatique ont ouvert la voie à un besoin urgent de technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifiques élevées et accessibles, environnements confinés, transport d'électrons sur de longues distances et séparation des charges facilitées) L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Sa particularité ne vient pas de composition chimique (Al, O et Si) mais de sa courbure intrinsèque qui induit une polarisation permanente de la paroi séparant efficacement les charges photo-induites. Plusieurs modifications de ces matériaux sont possibles (couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet de moduler leurs propriétés. Nous avons fait la preuve de concept que cette argile est un nanoréacteur pour des réactions photocatalytiques (production de H2 et réduction du CO2) sous illumination UV. Afin d'obtenir un photocatalyseur utile, il est nécessaire d'étendre la collecte des photons dans le domaine du visible. Une stratégie envisagée consiste à encapsuler et à greffer de façon covalente des colorants servant d'antenne dans la cavité. L'objectif de cette thèse consiste à synthétiser des imogolites avec différentes fonctionnalisations internes, à étudier l'encapsulation et le greffage de colorants dans la cavité de ces imogolites fonctionnalisées et enfin à étudier les propriétés photocatylitques.

(Nano)composites à (nano)charges cœur-coquille thermoconductrices et isolantes électriques orientables sous champ magnétique

Les avancées dans l'électronique de puissance, les moteurs électrique et les batteries par exemple engendrent une hausse significative de la production de chaleur pendant le fonctionnement. Cette augmentation de la densité de puissance associée à des surfaces d'échange thermique réduites amplifie les défis liés à l'évacuation de la chaleur. L'absence d'une dissipation adéquate entraîne une surchauffe des composants électroniques, impactant leurs performances, durabilité et fiabilité. Ainsi, il est impératif de développer une nouvelle génération de matériaux dissipateurs thermiques intégrant une structure dédiée à cet effet.

L’objectif et l’innovation des travaux du thésard résidera dans l’utilisation de (nano)charges très conductrices thermiquement qui seront orientables dans une résine époxy sous champ magnétique. Ainsi le premier axe de travail sera d’isoler électriquement les (nano)charges thermo-conductrices à fort facteur de forme (1D et 2D). L’isolation électrique de ces charges d’intérêt sera réalisée par voie sol-gel. La synthèse sera contrôlée et optimisée en vue de corréler l’homogénéité et l’épaisseur du revêtement aux performances diélectriques et thermique du (nano)composite. Le second volet portera sur le greffage de nanoparticules magnétiques (NPM) sur les (nano)charges thermo-conductrices. Des NPM commerciales seront évaluées ainsi que des nuances synthétisées en laboratoire. Les (nano)composites devront posséder une rhéologie compatible avec le procédé d'infusion de résine.

Modélisation et Validation expérimentale d’un réacteur catalytique et optimisation du procédé pour la production de e-Biocarburants

Les procédés « Biomass-to-liquid » visant une gazéification de biomasse en syngaz (mélange mélange CO+CO2+H2) puis une transformation de ce syngaz par une synthèse Fischer-Tropsch visant la production de différents carburants (kérosène, diesel, gasoil marin) connaissent un essor ces 20 dernières années. Plusieurs démonstrateurs ont été développés, notamment en Europe. Cependant, le trop faible ratio H/C du syngaz résultant de la gazéification nécessite une recirculation voire le rejet du CO2 en sortie du procédé ce qui complexifie les séparations et a un impact négatif sur la valorisation du carbone biosourcé.
Récemment, la possibilité d’effectuer, au sein d’un même réacteur catalytique, la réaction de Reverse Water Gas Shift (RWGS) et la réaction de Fischer-Tropsch (FT) à l’aide de catalyseurs à base de fer et de différents promoteurs a été démontrée (Riedel, 1999) et reproduite dans le cadre de plusieurs thèses CEA/CP2M (Panzone, 2019 ). Elle ouvre de nouveaux potentiels pour valoriser au mieux l’ensemble du contenu carboné de la biomasse à condition de compléter le syngaz par un apport d’hydrogène issu d’électricité renouvelable.
L’objectif de la thèse se concentre sur l’hydrogénation directe d’un mélange CO/CO2 en hydrocarbures qui consiste à enchainer au sein du même réacteur les reactions de RWGS et la synthèse Fischer-Tropsch . Il s’agit de modéliser cette synthèse catalytique dans un réacteur à lit fixe dans des conditions représentatives d’un procédé industriel de PBtL afin d’en optimizer le fonctionnement.

Saumures pour le recyclage des métaux

Les métaux critiques sont essentiels pour différentes technologies indispensables pour réduire nos émissions de dioxyde de carbone. Cependant, le recyclage des métaux contenus dans les déchets électroniques est inférieur à 20 % au niveau mondial, ce gisement de métaux est donc encore sous-exploité. Il est de plus urgent de développer des procédés efficaces pour recycler des déchets comme les panneaux solaires, dont le volume de déchets générés va devenir très important dans les années à venir. Actuellement, les méthodes hydrométallurgiques classiques utilisent des solutions aqueuses souvent toxiques pour dissoudre les métaux, ce qui pose des défis environnementaux conséquents.

Ce projet propose une alternative innovante en utilisant des saumures concentrées (solutions aqueuses de sels), pour oxyder et dissoudre les métaux. Dans ce sujet de thèse, les propriétés fondamentales des saumures et leur capacité à dissoudre des métaux seront étudiées avec différentes méthodes, notamment électrochimiques. Les méthodes d'intelligence artificielle développées au laboratoire seront utilisées pour cribler de nombreuses saumures capables d'améliorer la dissolution de métaux. Dans un second temps, des procédés de recyclage basés sur les saumures seront développés pour recycler les métaux contenus dans les circuits imprimés et les panneaux solaires. Enfin, la séparation des métaux et le traitement des saumures usées sera étudié avec des procédés membranaires et électrochimiques.

Compréhension des mécanismes de l’hydrogénation par voie directe du CO2 par des catalyseurs (Na,K)FeOx via un couplage théorique-expérimental

Face au dérèglement climatique, la sobriété énergétique pour réduire nos émissions de CO2 s'impose. Une autre solution au problème existe : la capture, le stockage et l'utilisation du CO2, et ce afin de tendre vers une économie circulaire du carbone, et à terme la défossilisation. Dans cette optique, l'hydrogénation par voie directe du CO2 permet de le transformer en molécules d'intérêts tels que les hydrocarbures, via le couplage de la réaction reverse water gas shift (RWGS) et de la synthèse Fischer-Tropsch (FTS).

La catalyse computationnelle operando a récemment émergé comme étant une alternative raisonnée au développement de nouveaux catalyseurs grâce à une approche multi-échelle de l’atome jusqu’à la particule active, afin de modéliser la sélectivité et l’activité du catalyseur. Les nouveaux outils combinant les simulations ab initio (DFT) et la dynamique moléculaire (MD) via des algorithmes de machine learning permettent de faire le lien entre la précision des calculs DFT et la puissance des simulations atomistiques. Les catalyseurs actuels bifonctionnels (car actifs pour la RWGS et la FTS) pour l’hydrogénation par voie directe du CO2 sont à base d’oxydes de fer dopés (promoteurs métalliques).

Ce projet a pour objectif l’étude théorique de catalyseurs de type Na-FeOx et K-FeOx dopés avec du Cu, Mn, Zn et Co, et ce en 4 étapes : les simulations DFT (énergies d’adsorption, densités d’états, barrières d’énergies, états de transition), la modélisation microcinétique (constantes de réaction, TOF), la construction de potentiels interatomiques par couplage DFT/machine learning, la simulation de particules entières (sélectivité, activité, grandeurs microscopiques).

Cette étude théorique ira de pair avec la synthèse et des mesures expérimentales des catalyseurs étudiés, et des catalyseurs optimisés émergeants des résultats computationnels. Toutes les données accumulées (DFT, MD, propriétés catalytiques) pourront alimenter une base de données, qui pourra être exploitée à terme pour faire émerger des descripteurs d’intérêt pour l’hydrogénation du CO2.

Comportement redox du technetium dans le procédé innovant PUMAS: étude cinétique et spéciation

Le technétium (Tc), élément radioactif artificiel, constitue environ 6 % des produits de fission dans le combustible nucléaire usé. Le procédé PUREX permet de séparer l’uranium et le plutonium des autres produits de fission. Cependant, le Tc est co-extrait avec ces actinides, nécessitant une désextraction supplémentaire. Lors de cette étape, un agent stabilisant, le nitrate d’hydrazinium (NH), est utilisé, mais en raison de sa toxicité et de sa classification CMR, il est en cours de remplacement par des alternatives moins toxiques, telles que les oximes. Ces dernières, bien que prometteuses, présentent une cinétique de désextraction plus lente que le NH. Dans le cadre du procédé PUMAS, cette thèse vise à comprendre les mécanismes redox complexes du Tc et les différences de cinétique observées entre les oximes et le NH. Le doctorant étudiera les formes réduites du Tc et analysera les cinétiques de réduction en présence d’U(IV) et d’agents anti-nitreux. Il développera une méthodologie pour caractériser les états d'oxydation du Tc et déterminera les constantes de réaction en fonction de la température et de la concentration en réactifs.
Le candidat travaillera en étroite collaboration avec l’équipe encadrante afin de développer son autonomie, sa capacité d’adaptation, ainsi que son aptitude à proposer des idées innovantes. À l'issue de ce parcours, le candidat aura non seulement acquis des compétences techniques de haut niveau, mais aussi développé des aptitudes en gestion de projet, en travail collaboratif, ainsi qu’en rédaction et communication scientifique. Ces compétences lui offriront de solides perspectives pour une carrière dans la recherche académique ou au sein de l'industrie.

Top