Compréhension des mécanismes de dissolution oxydante de (U,Pu)O2 en présence de platinoïdes

Le traitement des combustibles MOx, à base d’oxyde mixte d’uranium et de plutonium (U,Pu)O2, a pour objectif de recycler le plutonium. Le dioxyde de plutonium (PuO2) est difficile à dissoudre dans l’acide nitrique concentré. L’ajout d’une espèce très oxydante, telle que Ag(II), dans l’acide nitrique permet de solubiliser le plutonium avec des cinétiques de dissolution rapide : c’est la dissolution oxydante. Les produits de fission contenus dans le MOx irradié, notamment les platinoïdes, sont susceptibles de dégrader les performances de dissolution oxydante du plutonium via des réactions parasites. Pour le déploiement industriel de ce type de procédé, comprendre le rôle des platinoïdes sur la cinétique de cette dissolution s’avère donc primordial. Il n’existe cependant, à l’heure actuelle, que très peu de données sur ce sujet.

L’objectif de cette thèse est de contribuer à combler cette lacune. Le travail proposé consiste en une étude expérimentale paramétrique de complexité croissante : l’impact des platinoïdes sur la consommation d’Ag(II) sera d’abord étudié séparément, puis au cours de la dissolution de (U,Pu)O2. Ces résultats permettront de proposer un modèle cinétique de dissolution en fonction des paramètres étudiés.

A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie ou chimie minérale, maitrisera un large panel de techniques expérimentales ainsi que des méthodes de modélisation pointues. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.

Etude de l'altération du MOx et de composés modèles en condition d'entreposage sous eau

Ce sujet de thèse traite du recyclage du combustible nucléaire en France, avec un focus sur le multirecyclage de l’uranium et du plutonium des combustibles MOX, prévu d'ici 2040. Après leur passage en réacteur, les combustibles usés sont entreposés sous eau dans des piscines, où un défaut de gaine pourrait entraîner la contamination de l’eau et compliquer leur retraitement. Cette thèse propose d’étudier l'altération de ces combustibles ainsi que l’apparition des phases secondaires dans des conditions simulant l'entreposage.
Le travail est divisé en trois parties : la préparation de composés modèles, l’étude cinétique de l’altération chimique des matériaux modèles et industriels (MOX), et l’analyse des phases secondaires se formant en surface des combustibles irradiés. L'objectif est de mieux comprendre la stabilité de ces phases en fonction des conditions chimiques et d'irradiation, ainsi que les mécanismes de transformation. Les résultats permettront de développer des modèles de comportement des crayons défectueux sur plusieurs décennies, contribuant ainsi à une gestion plus sûre et efficace des combustibles irradiés.

Contrôle de la conversion de l'énergie thermoélectrique par la chimie de coordination des ions de métaux de transition dans les liquides ioniques

La thermoélectricité, la capacité d'un matériau à convertir la chaleur en énergie électrique, est connue dans les liquides depuis plusieurs décennies. Contrairement aux solides, ce processus de conversion dans les liquides prend plusieurs formes, notamment les réactions thermo-galvaniques entre les ions redox et les électrodes, la thermodiffusion d'espèces chargées et la formation d'une double couche électrique aux électrodes qui varie en fonction de la température. Les valeurs observées du coefficient Seebeck (Se = - DV/DT, le rapport entre la tension induite (DV) et la différence de température appliquée (DT)) sont généralement supérieures à 1 mV/K, un ordre de grandeur plus élevé que celles trouvées dans les semi-conducteurs solides. Le premier exemple fonctionnel d'un générateur thermoélectrique (TE) à base de liquide a été rapporté en 1986 en utilisant des sels redox de ferro/ferricyanure dans l'eau. Cependant, dû à la faible conductivité électrique des liquides l’efficacité de conversion était très faible, ce qui empêchait leur utilisation dans des applications de récupération de la chaleur perdue à basse température.

Les perspectives des générateurs TE-liquides se sont améliorés au cours de la dernière décennie avec le développement des liquides ioniques (LI). Les LI sont des sels fondus qui sont liquides en dessous de 100 °C. Par rapport aux liquides classiques, ils présentent de nombreuses caractéristiques favorables telles que des points d'ébullition élevés, une faible pression de vapeur, une conductivité ionique élevée, une faible conductivité thermique et aussi des valeurs de Se plus élevées. Plus récemment, une étude expérimentale menée par l’IJCLab et le SPEC a révélé que la complexation de couples redox de métaux de transition dans des liquides ioniques peut conduire à une hausse de leur coefficient Se significative de -1,6 à -5,7 mV/K, l'une des valeurs les plus élevées rapportées dans les cellules thermoélectriques à base de LI. Une compréhension électrochimique et physicochimique, et un contrôle précis de la spéciation des ions métalliques présentent sont nécessaire pour la conception rationnelle de la future technologie thermo-électrochimique.

Basé sur ces récentes découvertes, nous proposons une étude systématique de la chimie de coordination des ions redox de métaux de transition dans les liquides ioniques et les mélanges combinant des technique électrochimique et thermoélectrique. L’objectif à long terme associé à cette étude est de démontrer le potentiel d'application des cellules thermo-électrochimiques liquides basées sur des matériaux abordables, abondants et sans danger pour l'environnement pour la récupération d'énergie thermique comme outil d'efficacité énergétique.

Couplages réducteurs électrocatalysés d’olefines et de carbonyles pour la synthèse de molécules durables.

Le LCMCE vise à développer une méthode durable pour la fonctionnalisation réductrice de dérivés carbonylés avec des oléfines via l'électrochimie. Les processus redox traditionnels en synthèse organique reposent souvent sur des méthodes thermochimiques à partir d'oxydants ou de réducteurs stœchiométriques et produisent des déchets. L’électrification de ces processus permettra d’en améliorer l'économie d'atomes et d'énergie. La nouveauté de ce projet repose sur la génération des espèces catalytiques « métal–hydrure » par la réduction cathodique de complexes organométalliques en présence de protons et non par l’ajout de réducteurs chimiques comme cela est décrit dans la littérature. L’insertion d’une fonction alcène dans la liaison métal-hydrure conduira à la formation d’intermédiaire réactifs pour le couplage avec des carbonyles électrophiles. Les substrats de ce projet ont été sélectionnés de manière à apporter des preuves de concept rapides dans un premier temps puis de permettre l’étude de réactivités plus ambitieuses pour aller jusqu’à des réactions de carboxylation pour lequel CO2 est l’électrophile. Une attention particulière sera portée à la conception des catalyseurs homogènes, et à leur synergie avec les conditions électrochimiques afin de conduire à des espèces actives et sélectives. Le projet s’intéressera également à la compréhension des mécanismes mis en jeu lors de ces réactions.

Nanostructures à base de porphyrines

Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.

Dans le cadre de ce projet, les porphyrines synthétisées seront étudiées en collaboration avec plusieurs groupes de physiciens dans le but de réaliser sur surface par voie "bottom-up" des réseaux covalents (1D ou 2D) et d’étudier leur propriétés optiques et électroniques.

Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique

Depuis les années 1950, le recours aux plastiques pétrosourcés a créé un monde moderne consumériste basé sur l’utilisation de produits jetables. La production mondiale considérable de déchets plastiques a presque doublé en 20 ans, atteignant aujourd’hui les 468 millions de tonnes par an. Ces déchets plastiques, non biodégradables, engendrent de nombreuses pollutions environnementales (perturbations de la faune et de la flore, pollutions des eaux et des sols, etc.).. A peine 9% de ces déchets ont été recyclés, le reste étant brulé ou stocké en décharges. Les problèmes sanitaires, climatiques et sociétaux inhérents à cette économie linéaire imposent de créer une circularité de ces matières en développant des voies de recyclages efficaces et robustes. Alors que les voies actuelles de recyclage reposent en majorité sur des procédés mécaniques et se restreignent à des gisements particuliers de déchets (e.g. les bouteilles d’eau plastiques), le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. De tels procédés chimiques permettent de récupérer la matière carbonée des plastiques pour en régénérer de nouveaux.

Dans cet objectif de circularité de la matière, le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, boîtiers disjoncteurs, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux, comme les alcools et l’acide formique seront développés. L’utilisation du dihydrogène, réducteur industriel, sera également considérée. Dans le but d’optimiser ces systèmes catalytiques, nous chercherons à comprendre leur mode de fonctionnement et les mécanismes impliqués.

Décontamination assistée par ultrasons de solides pollués en mercure

Le mercure, considéré comme l’un des polluants les plus dangereux, a été largement utilisé dans l’industrie, en particulier dans des électrolyseurs (procédé chlor-alkali). De nombreuses installations ont ainsi été contaminées. Les méthodes de stabilisation ou de décontamination existantes sont énergivores ou limitées en termes de spéciation. Nous nous intéressons ici à l’apport d’une irradiation ultrasonore dans un procédé de lixiviation du mercure présent dans des solides poreux (comme des mortiers). La caractérisation des solides et liquides avant/après décontamination sera effectuée par microscopie électronique à balayage (MEB) couplée à spectrométrie EDX, diffraction des rayons X (DRX) et spectrométrie de fluorescence des rayons X.
La thèse se déroulera sur le centre de Marcoule situé à 30 minutes d’Avignon, dans les Laboratoire des Procédés Supercritiques et de Décontamination (DMRC/STDC/LPSD) et Laboratoire de Sonochimie dans les Fluides Complexes (ICSM//LSFC). Le site, desservi par des bus, accueille de nombreux doctorants et post-doctorants. Le candidat recherché est ingénieur/titulaire d’un master 2 avec un profil génie chimique et des compétences souhaitées en chimie analytique et chimie inorganique. Le candidat acquerra une première expérience dans le domaine de la décontamination, qui constitue une des problématiques majeures liées à l’économie circulaire des énergies. Il pourra, selon l’orientation visée de la thèse, poursuivre sa carrière dans le milieu académique ou dans l’industrie.

Modélisation du ‘’Joint Oxyde-Gaine’’ et de la corrosion interne de gaine dans GERMINAL à partir des résultats issus de différentes techniques de caractérisation expérimentale

Ce sujet de thèse s’inscrit dans le cadre des études sur le comportement physico-chimique en conditions d’irradiation du combustible « oxyde d’uranium et de plutonium » actuellement envisagé pour les futurs réacteurs nucléaires de 4ème génération. Du fait de son régime thermique particulièrement élevé au cours de son séjour en réacteur, le combustible des réacteurs à neutrons rapides est le lieu de divers phénomènes de transformations physiques et chimiques. Ces phénomènes peuvent affecter significativement le comportement de l’élément combustible dans son ensemble, mais on assiste en particulier à deux phénomènes spécifiques à ce type de combustible ayant lieu à moyen et fort taux de combustion :
- La formation par évaporation-condensation d’une couche de composés de produits de fission localisée entre la surface externe de la pastille et la face interne de la gaine à taux de combustion moyen, dénommée JOG pour Joint Oxyde Gaine ;
- La formation d’une couche composée de produits de fission et des éléments constitutifs de l’acier de gainage sur la face interne de la gaine à fort taux de combustion issue de la ROG (Réaction Oxyde-Gaine).

L’apparition successive ou conjointe de ces deux phénomènes est un facteur limitant pour les taux de combustion. Aussi, il est important de pouvoir estimer de manière assez précise la composition chimique de la pastille combustible et du jeu pastille-gaine au cours de l’irradiation. De précédents travaux expérimentaux été confortées par des calculs thermodynamiques qui avait conduit à supposer que le JOG était principalement constitué de Cs2MoO4, avec également la présence d’autres éléments tels que le tellure ou le baryum. Malgré tout, il n’y avait pas eu de mise en évidence directe de la présence de ce composé. Or récemment, des caractérisations expérimentales réalisées dans le cadre d’une thèse en cours ont permis d’obtenir des mesures quantitatives des éléments chimiques et de confirmer que le JOG était principalement constitué de Cs, Mo et d’O mais aussi d’I et Ba répartis dans plusieurs phases. D’autres éléments ont été détectés et mesurés dans des zones localisées, à savoir du Te, du Zr ainsi que de l’U et du Pu. En ce qui concerne la corrosion, des phases à base de Fe, Te et Pd ont été observées, ainsi que la présence conjointe de Cr et d’O.

En parallèle, un travail de modélisation de la redistribution axiale du césium a été initié en vue d’une amélioration de la description actuellement adoptée dans GERMINAL, l’outil de calcul scientifique (OCS) dédié au calcul du comportement thermomécanique et physico-chimique du combustible des réacteurs de 4ème génération irradié en conditions nominales et/ou incidentelles. En effet, l’inventaire en éléments chimiques à une cote axiale donnée intervient au premier ordre sur l’épaisseur de JOG et l’épaisseur de ROG calculée.

L’objectif du sujet de thèse consiste à améliorer la description et la modélisation de la formation du JOG et de la ROG dans l’outil de calcul scientifique (OCS) GERMINAL.

Pour ce faire, les recherches seront développées sur trois axes :
- Approfondissement de la méthodologie de migration radiale adoptée dans le code GERMINAL via la comparaison avec les résultats expérimentaux récemment obtenus. Celle-ci repose sur un couplage avec un module de thermochimie où plusieurs hypothèses de relâchement des produits de fission volatils créés dans la pastille vers le jeu pastille-gaine peuvent être considérées.
- Poursuite du développement du modèle de redistribution axiale du césium et par extension des produits de fission volatils afin d’aboutir à une première implémentation dans le code GERMINAL pour test et validation préliminaire par comparaison avec les résultats expérimentaux,
- Enfin, des calculs thermodynamiques visant à déterminer la nature et la quantité locale des phases chimiques formées dans la pastille combustible ainsi que des phases constitutives du JOG et de la ROG seront effectués à partir des inventaires axiaux évalués par le code GERMINAL.
Ainsi, il sera possible de pouvoir évaluer de manière plus précise la composition chimique du combustible irradié, du JOG et des produits de la ROG en fonction du taux de combustion via l’OCS GERMINAL en fonction du temps aux différentes localisations radiales et axiales.

Le doctorant sera intégré dans le service d’étude et de simulation du comportement du combustible qui dispose ou développe des outils de simulation variés (Département d'études des combustibles, Institut IRESNE (CEA Cadarache). Il interagira également avec le laboratoire de caractérisation et d’étude des propriétés des combustibles (SA3E/LCPC) d’où sont issues l’essentiel des données expérimentales actuellement disponibles sur le JOG et la ROG. Par ailleurs, des collaborations de type académiques ou internationales sont envisageables, notamment dans le cadre de l’OCDE/AEN avec le développement de la base de données thermodynamiques TAFID. Elles permettront au doctorant de valoriser les compétences qu’il aura acquises dans le domaine de la caractérisation des matériaux nucléaires ainsi que dans celui du calcul thermodynamique et de la simulation du comportement physico-chimique du combustible nucléaire irradié.

Nucléation, Croissance et Propriétés Structurales Multi-Echelle de Nanoparticules Colloïdales d’Oxydes d’Actinides (Pu, U, Th)

Les oxydes nanocristallins possèdent des propriétés physico-chimiques uniques, modulées par leur taille et leur structure locale, les rendant prometteurs pour diverses applications technologiques. Cependant, les nanoparticules d’oxydes d’actinides restent encore peu étudiées, en raison de leur radioactivité et toxicité. Néanmoins, les études qui leur sont consacrées sont grandissantes, motivées par des raisons environnementales ou industrielles, notamment pour leur implication dans les cycles du combustible nucléaire actuels et futurs. Cette thèse cible le plutonium, un élément clé des réacteurs nucléaires. Son comportement en solution est complexe, notamment en raison des réactions d’hydrolyse qui conduisent à la formation de nanoparticules colloïdales de PuO2 extrêmement stables. Bien que ces espèces soient aujourd’hui mieux décrites, les mécanismes conduisant à leur formation restent encore peu explorés.

L'objectif ambitieux de cette thèse est de percer les mécanismes fondamentaux en lien avec la formation de ces nanoparticules en adoptant une approche systématique combinant une large gamme de paramètres expérimentaux. Ceux-ci incluent le milieu de synthèse, la température, la concentration des réactifs, la durée de réaction ou encore l'apport de la sonochimie. L’accent sera mis sur l’étude des étapes de nucléation et de croissance de ces nanoparticules, ainsi que sur leurs propriétés structurales en fonction des conditions physico-chimiques qui influencent leur formation. Des études seront conjointement réalisées à l’ICSM avec les éléments Th, U et Zr en tant qu’analogues et sur l’installation Atalante pour le Pu. Au-delà des techniques usuelles de laboratoire nécessaires à la caractérisation de ces systèmes, des expériences complémentaires seront réalisées sur des lignes synchrotron (SOLEIL et ESRF) afin de caractériser de manière approfondie les propriétés structurales et réactionnelles de ces espèces et de leur précurseur.

Prédire la solubilité grâce à l’IA pour innover en hydrométallurgie

L’un des challenges de l’hydrométallurgie est de parvenir à trouver une molécule extractante à la fois sélective et efficace. Pour ce faire, il faut choisir parmi des milliers de possibilités, action impossible à réaliser par une méthode synthèse-test. A la place, de nombreuses études se basent sur des calculs quantiques pour évaluer l’efficacité d’un ligand à partir de la stabilité du complexe. Cependant, ces méthodes ne permettent pas de prendre en compte certains paramètres physico-chimiques essentiels à une extraction efficace tels que la solubilité.
Ce projet a donc pour objectif de développer un outil informatique basé sur l’IA capable de prédire la solubilité d’une molécule dans un solvant donné à partir de sa structure moléculaire. Dans un premier temps, l’étude se focalisera sur 3 solvants : l’eau, pour laquelle des outils pré-existants serviront de référence, l’acide nitrique 3 M pour être dans des conditions usuelles de l’industrie nucléaire, et l’octanol, solvant organique utilisé pour déterminer le coefficient de partage logP. Le projet se découpe en 4 jalons principaux :
1)Etude bibliographique d’outils similaires existants permettant de choisir les voies les plus prometteuses
2)Recherche de bases de données et complétion si nécessaire par des expériences de solubilité en laboratoire
3)Modification/création du code et entraînement du réseau de neurones sur les bases de données ainsi établies
4)Vérifications des prédictions sur des molécules non-incluses dans les bases de données par comparaison avec des mesures en laboratoire

Top