Modélisation multi-échelle de l’émission d’ions de terres rares à partir de liquides ioniques sous champ électrique intense

L’objectif principal de cette thèse est de modéliser les mécanismes d’émission d’ions de terres rares à partir de liquides ioniques soumis à un champ électrique intense, afin d’identifier les conditions favorables à l’émission d’ions faiblement complexés.
Il s'agira d’établir des critères rationnels pour la conception de nouvelles sources ILIS adaptées à l’implantation localisée de terres rares dans des dispositifs photoniques.
Le travail de thèse s’appuiera sur des simulations de dynamique moléculaire à grande échelle, reproduisant la région d’émission d’un cône de Taylor sous champ électrique.
Les simulations seront confrontées aux expériences d’émission menées en parallèle dans le groupe SIMUL en collaboration avec Orsay Physics TESCAN, utilisant une source ILIS prototype dopée en terres rares. Les comparaisons des mesures (spectrométrie de masse, distribution énergétique) permettront d’ajuster les modèles et de valider les mécanismes proposés.

Jonctions Tunnel Magnétiques aux limites

L'électronique de spin, grâce au degré de liberté supplémentaire apporté par le spin de l'électron, permet de déployer une physique du magnétisme à petite échelle très riche, mais également d'apporter des solutions technologiques de ruptures dans le domaine de la microélectronique (stockage, mémoire, logique...) ainsi que pour la mesure du champ magnétique.
Dans le domaine des sciences du vivant et de la santé, des dispositifs à base de magnétorésistance géante (GMR) ont fait la démonstration de la possibilité de mesurer à échelle locale les champs très faibles produits par les cellules excitables (Caruso et al, Neuron 2017, Klein et al, Journal of Neurophysiology 2025).
La mesure de l'information contenue dans la composante magnétique associée aux courants neuronaux (ou magnétophysiologie) peut en principe donner un descriptif du paysage neuronal dynamique, directionnel et différentiant. Elle pourrait ouvrir la voie à de nouvelles modalités dans les implants, grâce à leur immunité à la gliose et à leur longévité.
Le verrou actuel est la très petite amplitude du signal produit (<1nT) qui nécessite de moyenner le signal pour le détecter.
Les magnéto-résistances tunnel (TMR), dans lesquelles est mesuré un courant tunnel polarisé en spin, présentent des performances de sensibilité de plus d'un ordre de grandeur par rapport au GMR. Elles présentent cependant actuellement un niveau de bruit à basse fréquence trop élevée pour en tirer tout le bénéfice, notamment dans le cadre de la mesure de signaux biologiques.
L'objectif de cette thèse est de repousser les limites actuelles des TMR, en réduisant le bruit à basse fréquence, pour les positionner comme capteurs de rupture pour la mesure de signaux très faibles, et pour leur potentiel d'amplificateur de petits signaux.
Pour atteindre cet objectif, une première voie reposant sur l'exploration des matériaux composant la jonction tunnel, en particulier ceux de la couche magnétique dite libre, ou sur l'amélioration de la cristallinité de la barrière tunnel, sera déployée. Une seconde voie, consistant à étudier les propriétés intrinsèques du bruit à basse fréquence, en particulier dans des limites jusque-là inexplorées, en très basses températures où les mécanismes intrinsèques sont atteints, permettra de guider les solutions les plus prometteuses.
Enfin, les structures et approches les plus avancées sur l'état de l'art ainsi obtenues seront intégrées à des dispositifs permettant d'une part d'avoir des briques de base pour au delà de l'état de l'art et offrant de nouvelles possibilité pour les applications de l'électronique de spin. D'autre part, ces éléments seront intégrés à des systèmes pour la cartographie en 2D (voire 3D) de l'activité d'un système biologique global (réseau neuronal) et d’évaluer les capacités pour des cas cliniques (comme l’épilepsie ou la réhabilitation motrice).
Il est à noter que ces TMR améliorées pourront avoir d’autres applications dans les domaines d’instrumentation physique, de contrôle non destructif ou d’imagerie magnétique.

Cryptanalyse assistée par attaques physiques pour les schémas basés sur les codes correcteurs d’erreurs

L’évaluation de la sécurité de la cryptographie post-quantique, sous l’angle des attaques physiques, a été particulièrement étudiée dans la littérature, notamment sur les standards ML-KEM, et ML-DSA, basés sur les réseaux euclidiens. De plus, en mars 2025, le schéma HQC, basé sur les codes correcteurs d’erreurs, a été standardisé comme mécanisme d’encapsulation de clé alternatif à ML-KEM. Récemment, les Soft-Analytical Side-Channel Attacks (SASCA) ont été utilisées sur une grande variété d’algorithmes, afin de combiner l’information liée aux variables intermédiaires pour remonter au secret, apportant une forme de « correction » à l’incertitude liée aux attaques profilées. SASCA repose sur des modèles probabilistes appelés « factor graphs », sur lesquels un algorithme de « belief propagation » est appliqué. Dans le cas des attaques sur cryptosystèmes post-quantiques, il est en théorie possible d’utiliser la structure mathématique sous-jacente pour traiter la sortie d’une attaque SASCA sous la forme d’une cryptanalyse. Cela a par exemple été montré sur ML-KEM. L’objectif de cette thèse est de construire une méthodologie et les outils nécessaires de cryptanalyse et de calcul de complexité résiduelle pour la cryptographie basée sur les codes correcteurs d’erreurs. Ces outils devront prendre en compte l’information (« hints ») issue d’une attaque physique. Un second pan de la thèse sera d’étudier l’impact que peut avoir ce type d’outil sur le design de contremesures.

Propriétés physico-chimiques des verres photovoltaïques (PV) contenant de l'antimoine (Sb)

La thèse proposée s’inscrit dans le cadre du projet ANR GRISBI (2026-2030), qui vise à optimiser le recyclage du verre présent dans les panneaux photovoltaïques. Ces verres, très majoritairement fabriqués en Chine, sont dopés en oxyde d’antimoine (Sb2O3) afin de garantir une bonne transparence du verre, tout en minimisant les coûts de production. Cependant, cet antimoine empêche le recyclage de ces verres dans l’industrie européenne du verre plat, qui aurait pourtant besoin de cet apport de matière secondaire pour réduire son impact environnemental, entre-autres ses émissions de gaz à effet de serre (cf. l’objectif de neutralité carbone fixé par les Accords de Paris en 2015). Afin de rendre possible le recyclage du verre PV dans l’industrie du verre plat, il est donc nécessaire de mieux comprendre les propriétés physico-chimiques de l’antimoine dans le verre, et plus généralement dans le procédé float, qui met en jeu une interface verre chaud / étain liquide.
L’enjeu de la thèse réside ainsi dans la détermination des équilibres redox entre les différentes espèces multivalentes présentes dans les verres PV, en particulier entre les couples Sb2O3/Sb et Fe2O3/FeO. L’étude consistera donc à élaborer des verres présentant différentes teneurs en Sb2O3, puis à déterminer les mécanismes d’incorporation de l’antimoine dans les verres, ainsi que les conditions de température et de pO2 conduisant à la réduction de Sb3+ en Sb0. Les résultats expérimentaux, basés sur des caractérisations matériaux de type MEB, DRX, EXAFS, XANES, permettront de compléter les bases de données thermodynamiques, et de proposer une méthodologie permettant le recyclage des verres PV dopés à l’antimoine dans la production de verre plat.

La thèse se déroulera au CEA Marcoule, en collaboration avec l’IMPMC (Sorbonne Université), deux laboratoires dont les expertises dans le domaine des matériaux vitreux sont reconnues à l’international. L’ensemble des travaux sera réalisé sur des verres élaborés par le(la) doctorant(e), et leur caractérisation s’appuiera principalement sur les outils disponibles au sein du CEA et de l’IMPMC. Un profil en Sciences des Matériaux est recherché. Le sujet permettra au doctorant de pouvoir valoriser in fine un parcours de recherche appliquée.

Modèle de microémulsion : Vers la prédiction des procédés d’extraction liquide-liquide

Cette thèse de modélisation multi-échelle vise à développer des approches théoriques et des outils numériques innovants pour prédire les procédés d’extraction des métaux stratégiques, indispensables à la transition énergétique. Parmi les méthodes existantes, l’extraction liquide-liquide est un procédé clé, mais ses mécanismes sous-jacents restent encore mal compris. Pour répondre à ces enjeux, les phases solvants seront représentées par des microémulsions, grâce à une synergie d’approches de modélisation mésoscopiques et moléculaires.
Le volet mésoscopique reposera sur le développement d’un code basé sur la théorie des microémulsions utilisant une base d’ondelettes aléatoires. Ce code permettra de caractériser les propriétés structurales et thermodynamiques des solutions. L’approche moléculaire s’appuiera sur des simulations de dynamique moléculaire classique pour évaluer les propriétés de courbure des extractants nécessaires au passage entre les deux échelles.
Le nouveau code de calcul performant intégrera potentiellement des techniques d’intelligence artificielle pour accélérer la minimisation de l’énergie libre du système, tout en prenant en compte l’ensemble des espèces chimiques présentes avec un minimum de paramètres. Cela ouvrira la voie à de nouvelles pistes de recherche, notamment à travers la prédiction de la spéciation et le calcul des instabilités thermodynamiques dans les diagrammes de phase ternaires, permettant ainsi d’identifier des conditions expérimentales encore inexplorées.
Cette thèse, menée au Laboratoire de Modélisation Mésoscopique et Chimie Théorique à l’Institut de Chimie Séparative de Marcoule, aura des applications dans le domaine du recyclage, mais également dans le domaine des nanosciences, élargissant ainsi l’impact de ces travaux.
Le/La doctorant(e), de formation initiale en chimie-physique, chimie théorique ou physique, et ayant un fort intérêt pour la programmation, sera encouragé(e) à valoriser ses résultats scientifiques par des publications et des communications lors de conférences nationales et internationales. A l’issue de la thèse, le/la candidat(e) aura acquis un large éventail de compétences en chimie théorique, modélisation, calcul numérique et chimie-physique, lui offrant de nombreuses opportunités professionnelles, tant en recherche académique qu’en R&D industrielle.

Charge rapide des batteries Lithium-ion et lithium plating : Etude du phénomène par RMN operando

Le sujet de la thèse porte sur le processus de charge rapide des batteries lithium-ion et, plus particulièrement, le phénomène de lithium plating qui sera étudié grâce à la RMN operando. L’application visée est donc la mobilité électrique. L’objectif de la thèse est d’étudier la dynamique d’insertion du lithium et de dépôt de lithium métal à l’électrode négative à base de graphite (ou de graphite/silicium) afin de comprendre les mécanismes conduisant à la formation du plating.
La technique privilégiée est la RMN operando car elle offre la possibilité unique de suivre en même temps les signaux des phases lithiées du graphite et du lithium métallique déposé en cours des processus électrochimiques. Le couplage de l’électrochimie et la RMN operando nous permettra de déterminer l’onset du plating, c’est-à-dire le potentiel de l’électrode négative pour lequel le dépôt s’amorce, et la cinétique de dépôt et de réinsertion du lithium métallique et cela, à différentes températures et différents régimes de courant en charge. Nous étudierons à la fois des systèmes Li-ion constitués d’une électrode négative en graphite pur mais également en graphite-silicium afin d’étudier l’impact du silicium sur ce phénomène. Les données obtenues sur les mécanismes d’onset et les cinétiques de dépôt et de réinsertion du lithium métallique seront implémentées dans un modèle multiphysique déjà développé au laboratoire afin d’améliorer la prédiction de l’onset du plating. Nous serons ensuite à même d’évaluer les gains en chargeabilité sur un système NMC 811 // Gr+Si intégrant des électrodes optimisées et de proposer des protocoles de charges innovants.

Modélisation multiphysique du frittage du combustible nucléaire : effet de l’atmosphère sur la cinétique du retrait

Les combustibles de dioxyde d’uranium (UO2), utilisés dans les centrales nucléaires sont des céramiques, dont le frittage en phase solide est une étape-clé de la fabrication. L’étape de frittage consiste en un traitement thermique sous pression partielle contrôlée de O2 permettant de consolider, densifier le matériau et faire grossir les grains de UO2. Le grossissement des grains induit la densification du matériau (fermeture des pores) et le retrait macroscopique de la pastille. Si le compact (poudre comprimée par pressage avant le frittage) admet de fortes hétérogénéités de densité, une différence de densification dans la pastille peut avoir lieu entraînant un retrait différentiel et l’apparition de défauts. De plus, l'atmosphère de frittage, c'est-à-dire la composition du gaz dans le four, impacte la cinétique de grossissement des grains et donc le retrait de la pastille. Ainsi, une simulation avancée permettrait d'améliorer la compréhension des mécanismes observés ainsi que d'optimiser les cycles de fabrication.

Cette thèse se consacre à la mise en place d’un modèle thermique-chimique-mécanique du frittage pour simuler l’impact de la composition et les propriétés physiques de l’atmosphère sur la densification du combustible à l’échelle de la pastille. Cette échelle nous permettra de considérer les gradients de densité issus du pressage, mais également de prendre en compte la cinétique de diffusion d’oxygène impactant localement la vitesse de densification qui elle-même impactera le processus de transport. Une simulation multiphysique est nécessaire pour simuler le couplage de ces phénomènes.

Ce travail de thèse sera mené au sein du Laboratoire commun MISTRAL (Aix-Marseille Université/CNRS/Centrale Marseille et l'institut IRESNE du CEA-Cadarache). Le doctorant valorisera ses résultats au travers de publications et participations à des congrès et aura acquis de solides compétences qui sont recherchées et valorisables dans un grand nombre de domaines académiques et industriels.

Formation des magnétars : de l’amplification à la relaxation des champs magnétiques les plus extrêmes

Les magnétars sont les étoiles à neutrons arborant les plus forts champs magnétiques connus dans l’Univers, observées comme des sources galactiques de haute énergie. La formation de ces objets figure parmi les scénarios les plus étudiés pour expliquer certaines des explosions les plus violentes : les supernovae superlumineuses, les hypernovae et les sursauts gamma. Notre équipe a réussi au cours des dernières années à reproduire numériquement des champs magnétiques d’une intensité comparable à celle des magnétars en simulant des mécanismes d'amplification dynamo qui se développent dans les premières secondes après la formation de l’étoile à neutrons. La plupart des manifestations observationnelles des magnétars nécessitent cependant que le champ magnétique survive sur des échelles de temps bien plus longues (de quelques semaines pour les supernovae superlumineuses à des milliers d’années pour les magnétars galactiques). Cette thèse consistera à développer des simulations numériques 3D de relaxation du champ magnétique initialisées à partir de différents états dynamo calculés précédemment par l’équipe, en les prolongeant vers des stades plus tardifs après la naissance de l’étoile à neutrons lorsque la dynamo n’est plus active. L’étudiant.e déterminera ainsi comment le champ magnétique turbulent généré dans les premières secondes va évoluer pour éventuellement atteindre un état d’équilibre stable, dont on cherchera à caractériser la topologie et à le confronter aux observations électromagnétiques.

Intégration des Nanotubes de carbone alignés dans les batteries sans anode : mécanisme et optimisation des cellules

Les batteries sans anode ou à anode libre suscitent un intérêt croissant en raison de leur excellente densité énergétique, de leur faible coût et de la facilité de mise à l’échelle de leur procédé de fabrication. L’exploration des batteries sans anode pourrait offrir une avancée majeure dans le domaine du stockage de l’énergie, en utilisant la réserve de lithium déjà présente dans la cathode NMC pour effectuer des cycles réversibles après un processus de formation initial. Cette approche permettrait de réduire l’épaisseur globale, le nombre d’étapes de traitement et le coût des matériaux, tout en offrant une excellente densité énergétique. Les nanotubes de carbone alignés verticalement (VACNTs) sur des substrats métalliques peuvent représenter un choix intéressant pour cette application en raison de leur faible épaisseur, de la reproductibilité de leur processus de synthèse et de leurs propriétés de surface uniformes, qui ont déjà démontré leur intérêt applicatif dans le domaine des supercondensateurs. Dans ce projet de doctorat, nous explorerons une nouvelle voie d’application : les batteries sans anode, où les VACNT servent de substrat de dépôt pour le lithium ou le sodium. Nous étudierons l’électrochimie des VACNTs dans les batteries lithium sans anode (avec électrolytes liquides et solides) ainsi que dans les batteries sodium sans anode avec électrolyte liquide. Le doctorant travaillera sur l’optimisation de la synthèse des VACNTs afin d’ajuster leur épaisseur et leur densité pour les adapter à leurs propriétés électrochimiques. Des études post-cyclage (Raman et MEB) seront menées afin d’analyser l’effet du cyclage et des électrolytes sur les couches de VACNTs. L’objectif du projet est d’explorer les opportunités d’application des VACNTs dans divers systèmes de stockage d’énergie, ce qui pourrait ouvrir de nouvelles perspectives d’utilisation et de valorisation.

Magnéto-convection des étoiles de type solaire: émergence du flux et origine des taches stellaires

Le Soleil et les étoiles de type solaire possèdent un magnétisme riche et variable. Nous avons pu mettre en évidence dans nos travaux récents sur les dynamos turbulentes convectives de ce type d' étoiles, une histoire magnéto-rotationelle de leur évolution séculaire. Les étoiles naissent active avec des cycles magnétiques courts, puis en décélérant par le freinage du à leur vent de particules magnétisé, leur cycle magnétique s'allonge pour devenir commensurable à celui du Soleil (d'une durée de 11 ans) et enfin pour les étoiles vivant suffisamment longtemps finir avec une perte de cycle et une rotation dite anti-solaire (équateur lent/poles rapides). L'accord avec les observations est excellent mais il nous manque un élément essentiel pour conclure: Quel role jouent les taches solaires/stellaires dans l'organisation du magnétisme de ces étoiles et sont-elles nécessaires à l'apparition d'un cycle magnétique, ce qui s'appelle "le paradox des dynamos cycliques sans tache". En effet, nos simulations HPC de dynamo solaire n'ont pas la résolution angulaire pour résoudre les taches et pourtant nous observons bien des cycles dans nos simulation de dynamos stellaires pour des nombres de Rossby < 1. Dès lors les taches sont-elle une simple manifestations de surface d'une auto-organisation interne du magnétisme cyclique de ces étoiles, ou jouent-elle un rôle déterminant. De plus, comment l'émergence de flux en latitude et la taille et intensité des taches se formant à la surface évoluent ils au cours de l'évolution magnéto-rotationelle de ces étoiles? Pour répondre à cette question essentielle en magnétisme des étoiles et du Soleil, il faut développer de nouvelles simulations HPC de dynamo stellaire en soutien aux missions spatiales Solar Orbiter et PLATO pour lesquelles nous sommes directement impliqués, permettant de s'approcher plus près de la surface et ainsi de mieux décrire le processus d'émergence de flux magnétique et la possible formation de taches solaires. Des tests récents montrant que des concentrations magnétiques inhibant la convection de surface localement se forment ab-initio dans des simulations avec un nombre de Reynolds magnétique plus grand et une convection de surface plus petites échelles nous encourage fortement à poursuivre ce projet au delà de l'ERC Whole Sun (finissant en Avril 2026). Grace au code Dyablo-Whole Sun que nous co-développons avec le IRFU/Dedip, nous désirons étudier en détails la dynamo convective, l'émergence de flux magnétique et la formation auto-cohérente de taches résolues, en utilisant sa capacité de raffinement de maillage adaptative et en variant les paramètres globaux stellaire comme le taux de rotation, l'épaisseur de la zone convective, et l'intensité de la convection de surface, afin de déterminer comment leur nombre, morphologie et latitude d'émergence changent et s'ils contribuent ou non à la fermeture de la boucle dynamo cyclique.

Top