Etude et évaluation de capacités en technologie silicium pour applications dans la bolométrie infrarouge
Les microbolomètres constituent aujourd'hui la technologie dominante pour la réalisation de détecteurs thermiques infrarouges non refroidis. Ces détecteurs sont couramment utilisés dans les domaines de la thermographie et de la surveillance. Il est néanmoins attendu, pour les prochaines années, une explosion du marché des microbolomètres, avec notamment l'implantation de ces derniers dans les automobiles et la multiplication des objets connectés. Le CEA Leti Li2T, acteur reconnu dans le domaine des détecteurs thermiques infrarouges, transfère depuis plus de 20 ans les technologies successives de microbolomètres à l'industriel Lynred. Afin de rester compétitif dans ce contexte d'accroissement du marché des microbolomètres, le laboratoire travaille à des microbolomètres de rupture comportant des composants CMOS comme élément sensible. Dans cette optique, le laboratoire a engagé des études se focalisant sur des capacités en technologie silicium qui varient avec la température, avec des premiers résultats prometteurs non rapportés dans la littérature. Le sujet de thèse s'inscrit dans ce contexte et vise à démontrer l'intérêt de ces composants pour des applications microbolométriques. Il portera ainsi sur la modélisation analytique de ces composants et des effets physiques associés, ainsi que sur la lecture d'un tel composant dans une approche imageur microbolomètre. Une réflexion autour de l'intégration technologique sera également menée. L'étudiant bénéficiera de plusieurs lots technologiques déjà réalisés afin de caractériser expérimentalement les effets physiques et de prendre en main le sujet. L’étudiant aura à sa disposition l’ensemble des moyens de test du laboratoire (testeur paramétrique de semiconducteur, analyseur de bruit, banc optique, etc.) ainsi que les outils d’analyse pour une compréhension des phénomènes (Matlab/Python, simulations TCAD, simulations SPICE, Comsol, etc.). À l'issue de la thèse, l'étudiant sera en mesure de répondre à la question de l'intérêt de ces composants pour des applications microbolométriques.
Contrôle de la turbulence des modes d’électrons piégés à l’aide du chauffage à la résonance cyclotronique électronique
Les performances d’un tokamak sont liées au niveau du transport turbulent. L’instabilité des modes d’électrons piégés est l’une des principales instabilités à l’origine de la turbulence dans les tokamaks. D’autre part, le chauffage à la résonance cyclotronique électronique est un système de chauffage générique des tokamaks. Les deux processus physiques reposent sur des interactions résonantes avec les électrons. Une interaction non linéaire entre les processus résonants est théoriquement possible. L’objectif de la thèse est d’évaluer la possibilité d’exploiter cette interaction non linéaire pour permettre de stabiliser l’instabilité des modes d’électrons piégés au sein des tokamaks à l’aide d’une source de chauffage présente sur de nombreux tokamaks, dont ITER. Cette technique de contrôle pourrait permettre d’améliorer les performances de certains tokamaks sans surcoût.
La thèse reposera sur une compréhension théorique des deux processus étudiés, demandera l’utilisation du code gyrocinétique GYSELA pour modéliser les interactions non linéaires entre processus résonants et comportera un aspect expérimental pour valider le mécanisme de contrôle de la turbulence identifié.
Caractérisation de la récupération motrice au cours d’un processus de rééducation guidé par BCI
Les interfaces cerveau-machine ou BCI (pour Brain Computer Interface) permettent de restaurer une fonction perdue en offrant la possibilité à un individu de contrôler des dispositifs externes grâce à la modulation de son activité cérébrale. Le CEA a développé une technologie de BCI basée sur l’implant WIMAGINE de mesure de l’activité cérébrale par électrocorticographie (ECoG) et sur des algorithmes de décodages des intentions motrices. Cette technologie a initialement été testée pour le contrôle d’effecteurs robotiques de type exosquelette, et de dispositifs de stimulation médullaire pour pallier les pertes motrices graves. Ce paradigme initial de suppléance et de substitution, bien que prometteur, laisse désormais entrevoir un potentiel d’application différent : celui de la récupération fonctionnelle par rééducation guidée par BCI. La littérature actuelle suggère en effet que les BCI, utilisées de manière intensive et bien orientées, peuvent favoriser la plasticité neuronale et, par extension, une amélioration des capacités motrices résiduelles. En particulier, les BCI implantées en électrocorticographie (ECoG) pourrait apporter des gains thérapeutiques significatifs.
L’objectif de cette thèse est donc d’évaluer le potentiel de la technologie BCI du CEA pour favoriser l’amélioration des capacités motrices résiduelles de patients paralysés par plasticité neuronale.
Ce travail sera abordé par une démarche scientifique rigoureuse et multidisciplinaire, comprenant une revue exhaustive de la littérature scientifique, la mise en place et la réalisation d’expérimentations cliniques avec des patients, le développement algorithmique d’outils de suivi et d’analyse de la progression des patients et la publication des résultats significatifs dans des revues scientifiques de haut-niveau.
Cette thèse est destinée à un(e) étudiant(e) spécialisé(e) en ingénierie biomédicale, avec une expertise en traitement de signal et analyse de données physiologiques complexes et une expérience en Python ou Matlab. Un fort intérêt pour l’expérimentation clinique et les neurosciences sera aussi nécessaire. L’étudiant(e) travaillera au sein d’une équipe pluridisciplinaire au sein de CLINATEC, contribuant ainsi à la recherche de pointe dans le domaine des BCIs.
Développement d’algorithmes et d’outils de modélisation pour des mesures de CD-SAXS à basse énergie
Le CEA–LETI est un des acteurs Européen principaux de l’industrie des semi-conducteurs. Avec sa plateforme de nano-caractérisation (PFNC) à Grenoble, il dispose d'un environnement de pointe avec un vaste éventail d'équipements à l'état de l'art. Nos équipes ont pour vocation d’accompagner le développement de nouveaux outils de caractérisation pour anticiper les besoins industriels (notamment autour des futurs nœuds technologiques). Ainsi, des travaux pionniers ont été réalisés autour du CD-SAXS sur la PFNC ces dernières années. Cette technique de diffusion/diffraction des rayons X permet de mesurer avec une précision sub-nanométrique les dimensions des nano-structures gravées dans les salles blanches du LETI. Dans le cadre de ce projet, nous proposons d’étendre l’approche CD-SAXS en utilisant les récents développements autour des sources basse-énergie de laboratoire (A. Lhuillier et al. 1988, prix Nobel 2023) appelées High Harmonics Generation (HHG) sources. Votre rôle sera de mettre en place les outils d'analyse spécifiques au développement de l’approche CD-SAXS à basse énergie. La première preuve de concept a été réalisée en Novembre 2023.
Mission:
Afin de prendre en compte dans la réduction de données les spécificités de cette nouvelle approche (multi longueur d'onde, basse énergie…), votre mission se concentrera sur plusieurs tâches:
- Développer différents outils numériques pour le traitement de données :
o Simulations éléments finis avec solver Maxwell
o Transformée de Fourier analytique (similaire au CD-SAXS)vs théorie dynamique
o Comparaison des différentes approches de simulations
- Construire et tester des modèles dédiés aux problématiques en lithographie(CD, overlay, rugosité)
- Définir les limitations de la technique par des simulations (notamment la résolution spatiale, les incertitudes de mesures);
Ce travail viendra compléter le développement expérimental de mesures de CD-SAXS avec une source de laboratoire HHG réalisée en parallèle par un postdoctorant.
Accélération de simulations thermo-mécaniques par Réseaux de Neurones --- Applications à la fabrication additive et la mise en forme des métaux
Dans un certain nombre d'industries telle que la mise en forme des métaux ou la fabrication additive, l'écart entre la forme désirée et la forme effectivement obtenue est important, ce qui freine le développement de ces méthodes de fabrication. Cela est dû en bonne partie à la complexité des processus thermiques et mécaniques en jeu, difficiles à simuler à des fins d’optimisation du fait du temps de calcul important de la simulation des phénomènes en jeu.
La thèse vise à réduire significativement cet écart grâce à l'accélération des simulations thermo-mécaniques par éléments finis, notamment via le design d'une architecture de réseau de neurones adaptée, en s'appuyant sur les connaissances physiques théoriques.
Pour mener à bien ce sujet, la thèse bénéficiera d'un écosystème favorable aussi bien au LMS de l'École polytechnique qu'au CEA List : architecture PlastiNN développée en interne (brevet en cours de dépôt), bases de données mécanique existantes, supercalculateur FactoryIA et DGX, machine d'impression 3D. Il s'agira dans un premier temps de générer des bases de données à partir de simulations éléments finis thermo-mécaniques, puis d'adapter PlastiNN à apprendre de telles simulations, avant de mettre en œuvre des procédures d'optimisation s'appuyant sur ces réseaux de neurones.
L'objectif final de la thèse est d'illustrer l'accélération de simulations éléments finis ainsi obtenue sur des cas réels : d'une part par l'instauration d'une rétroaction durant l'impression métallique via la mesure du champ de température pour réduire l'écart entre géométrie désirée et géométrie fabriquée, d'autre part par la mise en place d'un outil de commande de forge qui permet d'arriver à une géométrie désirée à partir d'une géométrie initiale. Les deux applications s'appuieront sur une procédure d'optimisation rendue réalisable par l'accélération des simulations thermo-mécaniques.
Etude thermomécanique des hétérostructures en fonction des conditions de collage
Pour de nombreuses applications industrielles, l'assemblage de plusieurs structures est l'une des étapes clés du processus de fabrication. Cependant, ces étapes sont généralement difficiles à réaliser, car elles conduisent à des augmentations significatives des déformations. La maîtrise des contraintes générées par les hétérostructures est donc impérative. Nous proposons d'aborder ce sujet en utilisant à la fois des méthodes expérimentale et des outils de simulation afin de prédire et d'anticiper les problèmes dus aux fortes déformations
Modélisation de la dynamique des faisceaux d’électrons dans les accélérateurs linéaires à induction
Cette thèse s’intéresse à la modélisation enveloppe et Particle-In-Cell (PIC) de la dynamique des faisceaux intenses d’électrons dans les accélérateurs à induction (LIA) et à la validation expérimentale de ce modèle. Les LIA utilisés en radiographie éclair transportent des faisceaux d’électrons impulsionnels (quelques dizaines de nanoseconde) à la fois intense (plusieurs kA) et de haute énergie (environ 20 MeV) afin de produire une source pénétrante de rayonnement X de faibles dimensions spatiales par rayonnement de freinage sur un matériau dense. Le faisceau initialement produit à une énergie proche de 4 MeV est injecté dans la ligne accélératrice où les électrons acquièrent progressivement de l’énergie en passant au niveau des gaps accélérateurs de cellules à induction. Dans un LIA, la compréhension et la maîtrise de la dynamique des faisceaux d’électrons sont nécessaires au succès d’une expérimentation réalisée dans des conditions extrêmes.
De nombreuses propriétés d’intérêt du faisceau d’électrons (dimension, position, quantité de mouvement, énergie, émittance) contribuent aux caractéristiques de la source de rayonnement X, elles-mêmes directement reliées à la qualité de la radiographie finale. Les énergies et les intensités des faisceaux sont telles que les forces auto-induites jouent un rôle clé dans leur dynamique. Les codes de simulations contribuent de manière significative à la compréhension et à la maitrise de la dynamique du faisceau. Aujourd’hui, l’étude de cette dynamique est majoritairement réalisée avec des codes enveloppe qui permettent de l’appréhender macroscopiquement et qui fournissent un formalisme intéressant d’un point de vue opérationnel pour régler le transport du faisceau. La méthode PIC, complémentaire de l’approche enveloppe, est également utilisée pour simuler la dynamique du faisceau. Elle permet une description plus complète de la physique mise en jeu dans les LIA [1] en reproduisant la quasi-totalité des phénomènes (accroissement d’émittance, évolution des distributions des particules, développement des instabilités de faisceau …) au prix cependant d’une importante mobilisation de ressources de calcul. De plus, elle permet d’appréhender les phénomènes mis en jeu lors d’un fonctionnement à plusieurs impulsions [2].
L’objectif de cette thèse est d’étudier par modélisations enveloppe et PIC la dynamique des faisceaux intenses d’électrons dans les accélérateurs à induction de l’installation EPURE et de valider ce modèle expérimentalement. Cette étude permettra de quantifier et intégrer les phénomènes physiques participant à l’évolution des propriétés du faisceau lors de son transport. Les outils développés lors de cette étude serviront à optimiser et prédire le transport en intégrant notamment les instabilités de type Beam Break-Up, Corkscrew ou ion hose qui dégradent la qualité du faisceau d’électrons. L’étude de l’impact de ces différentes contributions sur le transport du faisceau permettra d’évaluer les performances d’un accélérateur fonctionnant en simple ou en multi-impulsions. Dans un premier temps, l’étudiant se familiarisera aux codes PIC et enveloppe décrivant la dynamique des faisceaux dans les LIA en vue de les améliorer notamment au moyen d’algorithme génétique permettant d’optimiser le transport via les nombreux éléments de guidage du faisceau (solénoïdes, déviateurs …). Puis, l’évaluation et la prise en compte de phénomènes physiques complémentaires seront réalisées. Une validation du modèle de simulation sera ensuite faite à partir des données expérimentales obtenues sur les LIA de l’installation EPURE. Des stratégies de transports adaptées à des cas opérationnels et prospectifs multi-impulsions pourront être proposés sur les bases du modèle développé.
[1] J.M. Plewa et al., “High power electron diode for linear induction accelerator at a flash radiographic facility”, Phys. Rev. Accel. Beams, 21, 070401 (2018).
[2] R. Delaunay et al., “Dual-pulse generation from a velvet cathode with a new inductive voltage adder for x-ray flash radiography applications”, Phys. Rev. Accel. Beams, 25, 060401 (2022).
Etude et modélisation de l'impact de rayonnements ionisants sur des composants rapides innovants
Le CEA Gramat est le centre de référence de la Défense en vulnérabilité des systèmes et des infrastructures et efficacité des armements. Le Service des Effets Radiatifs et Electromagnétiques étudie la vulnérabilité de composants électroniques aux effets induits par des particules de haute énergie. Ces études ont pour objectif d’estimer le degré de susceptibilité de ces systèmes en environnement radiatif sévère. Les technologies de composants électroniques évoluent rapidement pour répondre aux exigences croissantes de vitesse, transmission de puissance, compacité, bande passante, fonctionnement à des températures élevées. Les nouveaux composants vont permettre de répondre aux besoins futurs des applications hyperfréquences et aux problématiques de la commutation rapide de puissance. Dans le cadre des domaines de l'aérospatial, de la défense, du nucléaire, du médical, et des recherches de physiques, ces composants devront en plus résister à l'impact de rayonnements ionisants.
L'objectif de cette thèse est d'étudier l'impact de rayonnements ionisants (exemples X, électrons, protons…) sur des composants innovants utilisés dans le domaine de l'émission en radio-fréquence et en commutation rapide. L'étude envisagée porte principalement sur des matériaux à grand gap (exemple GaN et SiC) mais d'autres technologies prometteuses pourront être envisagées. Les composants seront étudiés dans des régimes de fonctionnement dynamiques dans leur contexte d'utilisation. Cette thèse sera constituée d'un volet expérimental important qui permettra d'observer et de quantifier les effets de l'irradiation sur les différents composants. En parallèle, le second volet aura pour objectif de modéliser et d'expliquer les effets observés, notamment en dynamique, afin de déterminer quelles structures et quels matériaux sont les plus aptes à être utilisés dans les futures applications.
Cette thèse s'effectuera avec le laboratoire XLIM de l'Université de Limoges et fera l'objet de collaborations avec la société INOVEOS. Elle débutera par une étude bibliographique qui permettra d'identifier les composants d'intérêt. Ensuite l'approvisionnement, la conception et la réalisation des cartes de test seront conduits par le doctorant. La méthode de métrologie et le banc de test seront définis avant de procéder aux essais sous différents moyens d'irradiation qui auront lieu principalement au CEA. Une phase d'identification de la structure des composants sera réalisée avant et après irradiation. En parallèle, la modélisation du composant et la simulation de l'impact de l'interaction rayonnement matière seront réalisées à l'aide différents codes de calculs (exemple MCNP, GEANT4, TCAD, ADS, CST...).
(Nano)composites à (nano)charges cœur-coquille thermoconductrices et isolantes électriques orientables sous champ magnétique
Les avancées dans l'électronique de puissance, les moteurs électrique et les batteries par exemple engendrent une hausse significative de la production de chaleur pendant le fonctionnement. Cette augmentation de la densité de puissance associée à des surfaces d'échange thermique réduites amplifie les défis liés à l'évacuation de la chaleur. L'absence d'une dissipation adéquate entraîne une surchauffe des composants électroniques, impactant leurs performances, durabilité et fiabilité. Ainsi, il est impératif de développer une nouvelle génération de matériaux dissipateurs thermiques intégrant une structure dédiée à cet effet.
L’objectif et l’innovation des travaux du thésard résidera dans l’utilisation de (nano)charges très conductrices thermiquement qui seront orientables dans une résine époxy sous champ magnétique. Ainsi le premier axe de travail sera d’isoler électriquement les (nano)charges thermo-conductrices à fort facteur de forme (1D et 2D). L’isolation électrique de ces charges d’intérêt sera réalisée par voie sol-gel. La synthèse sera contrôlée et optimisée en vue de corréler l’homogénéité et l’épaisseur du revêtement aux performances diélectriques et thermique du (nano)composite. Le second volet portera sur le greffage de nanoparticules magnétiques (NPM) sur les (nano)charges thermo-conductrices. Des NPM commerciales seront évaluées ainsi que des nuances synthétisées en laboratoire. Les (nano)composites devront posséder une rhéologie compatible avec le procédé d'infusion de résine.
Développement d’un flow de data préparation de lithographique 3D pour le dessin du masque freeform
Avec l’avancement des technologies optoélectroniques, notamment des imageurs et AR/VR, des géométries 3D de dimensions sub-micrométriques sont plus en plus demandées par les clients industriels. Pour fabriquer ces structures 3D, la lithographie « grayscale » avec UV profond (248nm ou 193nm) est une technologie prometteuse compatible avec la production industrielle. Par contre, la maîtrise de cette technologie est complexe et nécessite un modèle de lithographie (optique + résine) avancée pour prédire le dessin du masque optique utilisé. La thèse permettra d’améliorer notre compréhension de nos model lithographie grayscale et ses limite, ayant pour d’améliorer et d’optimiser la model et la flow de data préparation ou masque design pour diminuer l’ecart entre simulation et pattern fabriquée. Masque freeform poussera les limites de lithographie grayscale pour attendre de pitch plus agressive souhaiter pour l’application optique et optoélectronique.