Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel

L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.

Expérimentation haut débit appliquée aux matériaux pour batteries

Utilisée depuis de nombreuses années dans le domaine de la pharmacie, l’expérimentation ou criblage haut débit (high throughput screening) apparait comme une méthode efficace pour conduire à la découverte accélérée de matériaux et comme un nouvel outil permettant d’élucider les relations composition-structure-propriétés fonctionnelles. Cette méthode est basée sur la synthèse combinatoire rapide d’un grand nombre d’échantillons de compositions différentes, combinée des caractérisations physico-chimiques rapides et automatisées par différentes techniques. Elle est utilement complétée par un traitement de données adapté.
Une méthodologie de ce type adaptée aux matériaux pour batteries lithium a été mise en place récemment au CEA Tech. Elle est basée d’une part sur la synthèse combinatoire de matériaux synthétisés par co-pulvérisation cathodique magnétron sous forme de couches minces, et d’autre part sur la réalisation de cartographies d’épaisseur (profilométrie), de composition élémentaire (EDS, LIBS), de structure (µ-DRX, Raman) et de propriétés électr(ochim)iques de bibliothèques de matériaux (~100) déposés sur un wafer. Une première phase a permis de mettre en place les principaux outils au travers de l’étude d’électrolytes solides amorphes de type Li(Si,P)ON pour batteries tout solide.
L’objectif de cette thèse est de poursuivre le développement de la méthode de manière à permettre l’étude de nouvelles classes de matériaux pour batteries : électrolytes cristallins ou vitrocéramiques pour Li ou Na, matériaux d’électrode oxydes, sulfures ou alliages métalliques. Il s’agira en particulier de tirer parti de nos nouveaux équipements de cartographie des propriétés physico-chimiques (µ-diffraction X, Laser-Induced Breakdown Spectroscopy) et d’établir une méthodologie de fabrication et de caractérisation de bibliothèques d’accumulateurs tout-solide en couches minces. Une partie de ce travail pourra également concerner le traitement des données et la programmation des moyens de caractérisation.
Ce travail sera l’objet de collaborations avec des chercheurs de l’ICMCB et du CENBG

Étude de résines grayscales et optimisation des procédés de lithographie pour des applications optiques sub-microniques

La photolithographie grayscale est un procédé utilisé depuis plusieurs dizaines d'années pour la réalisation de structures tridimensionnelles sur des substrats semiconducteurs, en particulier dans les domaines de l'optique et de l'opto-électronique. Cette technologie permet de réaliser des motifs 3D facilement transférables à l'industrie, grace à l'utilisation d'équipements de lithographie.
Après avoir atteint une forte expertise sur la réalisation de structures 3D supérieurs au micron grace à l'utilisation d'équipements d'insolation en I-line (365nm), le LETI souhaite développer son expertise grayscale dans l'UV profond (248nm, 193nm et 193nm immersion) afin d'atteindre des motifs submicroniques avec pour objectif l'état de l'art mondial.
Cette thèse sera consacrée à l'amélioration des connaissances physico-chimiques des nouvelles résines grayscales, dans le but d'améliorer les performances des procédés de lithographie mais également de prévoir le développement des gravures associées et des nouveaux modèles optiques pour les masques.
Vous rejoindrez l'équipe du laboratoire de lithographie du CEA-LETI, et serez également amené à échanger avec d'autres équipes (gravure, simulation optique). Vous aurez accès aux équipements de pointes installés dans les salles blanches, ainsi qu'à une plate-forme de nano-caractérisation pour mener à bien ces travaux de thèse dans une forte dynamique expérimentale.

Développement d’argyrodites à fort taux d’halogènes pour batterie tout-solide tout-sulfure

Les batteries tout-solides connaissent un regain d’intérêt depuis quelques années puisque cette technologie permet d’envisager une augmentation des densités d’énergie due à l’utilisation du lithium comme électrode négative mais également une augmentation de la sécurité des batteries par rapport à la technologie Li-ion. L’utilisation de sulfures comme matériaux d’électrode positive couplés à l’argyrodite comme électrolyte solide sont des systèmes intéressants à développer. En effet, les argyrodites atteignent des conductivités ioniques proches de celles des électrolytes liquides. De plus, la fenêtre de stabilité en cyclage des sulfures est proche de celle de l’argyrodite faisant de la technologie tout-sulfure une technologie prometteuse pour le développement des batteries tout-solides.
Dans une volonté d’améliorer les propriétés de conduction des argyrodites, des études récentes ont montré que la conductivité ionique dépend fortement de leur structure locale. La RMN du solide apparait ainsi comme une technique prometteuse afin de sonder les environnements locaux des noyaux cités et notamment de quantifier la variété d’environnements locaux différents favorisant une hausse de la conductivité ionique. Des compositions enrichies en halogénures semblant favoriser la conduction ionique, la synthèse de matériaux correspondant et leur structure seront étudiées.
La thèse s’articulera ainsi autour de deux axes principaux, l’étude de batteries tout-sulfures et la caractérisation fine d'argyrodite avec des structures locales contrôlées. En effet, des argyrodites riches en halogène seront développées et étudiées afin de déterminer l'influence des différents environnements locaux sur les propriétés de conduction.

Matériaux eco-conçus pour l’encapsulation des modules photovoltaïques flexibles de nouvelles générations

La durée de vie des dispositifs couches minces tel les dispositifs photovoltaïques Organiques (OPV) ou des modules Silicium (Si) photovoltaïques léger et/ou flexible de nouvelle génération est un point critique pour leur commercialisation. Il est notamment crucial de les encapsuler avec des matériaux hautement barrières aux gaz afin d’éviter leur dégradation selon différents mécanismes liés à l’insertion d’eau/oxygène qui peuvent être couplés à l’illumination. Cet objectif est d’autant plus complexe lorsque le dispositif, ainsi que son encapsulation, doivent être flexibles. Par ailleurs, l’éco-conception de cette nouvelle génération de modules flexibles amène aussi bien la question de la nature des matériaux d’encapsulation employés que celle de la fin de vie des matières constituant les modules. Par exemple, l’usage actuel de polymères fluorés pour l’encapsulation génère des produits toxiques en fin de vie et pourrait être substitué par l’usage de matériaux éco-conçus, potentiellement bio-sourcés, si les performance sont adaptées à la technologie photovoltaïque employée et à l’usage.
L’objectif de cette thèse sera tout d’abord d’étudier les propriétés physico-chimiques (barrières aux gaz, mécaniques, thermiques..) d’encapsulants bio-sourcés développés dans le cadre d’un projet national PEPR BioflexPV. Ces études concerneront aussi bien les matériaux de scellage que les capots flexibles. Par ailleurs, ces matériaux seront employés pour l’encapsulation de dispositifs réels OPV et Si flexibles afin d’en étudier la dégradation selon différentes conditions d’illumination, de température et d’hygrométrie. Ces études permettront de définir les mécanismes de dégradation mis en jeux selon la technologie photovoltaïque employée (OPV ou Si) et ainsi de définir les propriétés souhaitées pour les encapsulants bio-sourcés.

Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme

Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.

Développement d'un modèle stochastique multiphysique pour les mesures basées sur la scintillation liquide

Pour assurer la traçabilité métrologique au niveau international dans le domaine de l’activité, le Bureau international des poids et mesures (BIPM) développe un nouvel instrument de transfert appelé « Extension du Système International de Référence » (ESIR) fondé sur la méthode dite du Rapport de Coïncidence Triples à Doubles (RCTD) basée sur des comptages en scintillation liquide avec une instrumentation spécifique à trois photomultiplicateurs. L’objectif est de permettre les comparaisons internationales de radionucléides bêta purs, de certains radionucléides se désintégrant par capture électronique, et pour faciliter les comparaisons internationales de radionucléides émetteurs de particules alpha.
La méthode RCTD est une technique de mesures primaires d'activité utilisée dans les laboratoires nationaux. Pour déterminer l’activité, son application repose sur la construction d’un modèle d’émission de photons lumineux nécessitant la connaissance de l’énergie déposée dans le scintillateur liquide. Selon le schéma de désintégration, la combinaison des différentes énergies déposées peut être complexe, en particulier lorsqu’elle résulte du réarrangement électronique suite à une désintégration par capture électronique. L’approche stochastique du modèle RCTD s’applique en échantillonnant aléatoirement les différentes émissions de rayonnements ionisants suite à une désintégration. L’ajout récent de modules de lecture automatique des données nucléaires (comme celles disponibles dans la Table des Radionucléides) dans des codes de simulations rayonnements/matière (PENELOPE, GEANT4), permet une prise en compte rigoureuse de toutes les combinaisons possibles. L’approche stochastique permet de considérer l’énergie réelle déposée dans le flacon de scintillation liquide en prenant en compte les interactions dans l’ensemble de l’instrumentation.
La thèse a pour objectif le développement d’une approche stochastique multiphysique avec le code de simulation rayonnements/matière GEANT4 pour être notamment appliquée sur le système ESIR du BIPM. Le choix du code Geant4 offre la possibilité d’intégrer le transport des particules ionisantes et des photons de scintillation. Ce développement est d’un grand intérêt pour la métrologie de la radioactivité dans le but d’assurer la traçabilité métrologique à un plus grand nombre de radionucléides avec le système ESIR du BIPM. La thèse se fera en collaboration avec le Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) qui possède déjà une expérience dans le développement d’un modèle stochastique avec le code GEANT4 pour son instrumentation dédiée à la méthode RCTD au Laboratoire national Henri Becquerel (LNE-LNHB).

Cas d'Assurance Dynamiques pour les Systèmes Autonomes Adaptatifs

Donner l'assurance que les systèmes autonomes fonctionneront de manière sûre et sécurisée est une condition préalable à leur déploiement dans des domaines d'application critiques en termes de mission et de sécurité. Généralement, les assurances sont fournies sous la forme de cas d'assurance, qui sont des arguments vérifiables et raisonnés démontrant qu'une revendication de haut niveau (concernant généralement la sécurité ou d'autres propriétés critiques) est satisfaite compte tenu d'un ensemble de preuves relatives au contexte, à la conception et à la mise en œuvre d'un système. L'élaboration de cas d'assurance est traditionnellement une activité analytique, réalisée hors ligne avant le déploiement du système, et sa validité repose sur des hypothèses/prédictions concernant le comportement du système (y compris ses interactions avec son environnement). Cependant, il a été avancé que cette approche n'est pas viable pour les systèmes autonomes qui apprennent et s'adaptent en cours de fonctionnement. Cette thèse abordera les limites des approches d'assurance existantes en proposant une nouvelle catégorie de techniques d'assurance de la sécurité fondées sur la sécurité qui évaluent et font évoluer en permanence le raisonnement de sécurité, en même temps que le système, afin de fournir une assurance de la sécurité tout au long de son cycle de vie. En d'autres termes, l'assurance de la sécurité sera fournie non seulement au cours du développement et du déploiement initiaux, mais aussi en cours d'exécution, sur la base de données opérationnelles.

RMN du Xénon hyperpolarisé pour sonder la fonctionnalité de barrières biologiques

Le pompage optique du xénon, permettant d’obtenir rapidement un signal RMN intense, est une spécialité de l’équipe LSDRM. Le xénon, soluble dans les milieux biologiques, présente une grande gamme de déplacements chimiques, ce nous utilisons ici pour étudier les propriétés de barrières cellulaires. De nombreuses pathologies découlent d'une altération de celles-ci.

Dans ce sujet de thèse nous souhaitons développer une méthodologie spécifique au xénon hyperpolarisé pour étudier la fonctionnalité (intégrité, perméabilité, sélectivité) de barrières biologiques, en spectroscopie et en imagerie in vitro et in vivo. La thèse se déroulera en deux parties : in vitro il s’agira de développer un dispositif et les protocoles RMN permettant d’étudier des assemblages cellulaires modèles; in vivo des études sur rongeurs permettront d’évaluer l’aptitude du xénon à atteindre des organes plus ou moins proches des poumons en gardant sa polarisation, et de mesurer des cinétiques de passage. Ce sujet permettra des avancées instrumentales et méthodologiques majeures, ainsi qu’un approfondissement des connaissances sur les processus de transports sélectifs au niveau de différentes barrières biologiques.

Développement d’un système d’encapsulation multicouche pour la production de microcapsules cœur-coque adaptées à la croissance et la maturation d’organoïdes

Chaque année, 20 millions de personnes dans le monde sont diagnostiquées avec un cancer, 9.7 millions en décèdent (Kocarnik et al., 2021). La personnalisation du traitement pourrait fortement diminuer le nombre de décès. La thèse aborde cette thématique en proposant le développement d’organoïdes issus de biopsie de patients sur lesquels le traitement sera optimisé. La bioproduction de cellules encapsulées dans des bio-polymères est un domaine en pleine expansion pour la médecine personnalisée mais aussi pour la recherche et le criblage de médicaments, les thérapies cellulaires et la bio-ingénierie. Cette thèse s’inscrit dans ces domaines d’application à travers l’encapsulation multicouche de cellules dans des biopolymères à large gamme de viscosité.
La couche interne (cœur) offre un environnement optimal à la maturation et survie des cellules ou organoïdes et la couche externe assure une protection (coque) mécanique et une barrière filtrante contre les agents pathogènes.
Cette nouvelle thèse se propose de développer et d’étudier analytiquement et numériquement l’architecture d’une buse d’éjection à double compartiments pour la production haute fréquence de capsules cœur-coque monodisperses. Elle s’inscrit dans la continuité d’une thèse terminée en 2023 qui a permis d’étudier, de caractériser en détails et de développer un modèle prédictif pour la génération de microcapsules monocouches uniquement par force centrifuge.
Les mécanismes de formation et d’éjection des capsules multicouches sont complexes. Ils font intervenir les propriétés rhéologiques du bio-polymère, la force centrifuge, la tension de surface et les interfaces. L’architecture de la buse d’éjection devra prendre en compte ces propriétés. Un premier volet de cette thèse sera de mieux comprendre les mécanismes de formation multicouche et d’éjection des microcapsules en fonction de la géométrie de la buse d’éjection sélectionnée et ainsi pouvoir prédire et contrôler cette formation en fonction des propriétés rhéologiques du/des bio-polymère(s). Un second volet sera le développement d’un système automatisé permettant la production aseptique des capsules. Enfin, une validation biologique permettra de valider la technologie développée. Pour répondre aux objectifs de ce sujet d’étude, le candidat devra dans un premier temps mener une étude analytique et numérique, dessiner les buses d’éjection et s’appuyer sur le savoir-faire du laboratoire pour les fabriquer. Il fera des tests fluidiques sur des maquettes et optimiser le design afin de concevoir et tester un prototype de formation de microcapsules.
Le candidat doit avoir une formation en physique, en ingénierie et en mécanique des fluides avec un talent particulier pour les approches expérimentales. Une première expérience en microfluidique / biologie serait un atout.

Top