Accumulateurs aux lithium tout solide à base d’électrolyte pyrochlore
Face à l'augmentation de la demande énergétique, il est urgent de concevoir des systèmes de stockage plus performants, qu’ils soient stationnaires ou embarqués. Parmi ceux-ci, les batteries lithium-ion se démarquent comme les plus avancées, capables d’être fabriquées à partir d’électrolytes liquides ou solides. Les batteries tout-solide ont un bel avenir devant elles grâce à leurs électrolytes non inflammables et à leur capacité d’utiliser du lithium métallique pour augmenter la densité d’énergie. Bien que la recherche sur ces batteries donne lieu à une forte compétition internationale, leur commercialisation n’est pas encore une réalité. En effet, deux obstacles importants entravent leur développement : la faible conductivité ionique intrinsèque des solides et la difficulté d’obtenir de bonnes interfaces solides/solides au sein des électrodes composites et du système complet.
Cette thèse vise à développer des batteries tout-solide basée sur une nouvelle classe de matériaux superioniques de type pyrochlore oxyfluorure, qui sont stables à l’air et ont une conductivité ionique supérieure à celle de tous les électrolytes solides oxydes existants. Les propriétés électrochimiques des batteries tout solide seront soigneusement examinées en combinant des techniques in situ et operando (DRX, Raman, analyse par faisceau d'ions/synchrotron, RMN du solide, Tomographie à rayons X…).
Mots clés :
Électrolyte solide, Batterie tout solide, Résonance magnétique nucléaire, Électrochimie, pyrochlore Oxyfluorure, in situ/operando, Spectroscopie, Synchrotron
Modélisation simplifiée de la calcination en tube tournant
Dans le cadre du retraitement des combustibles usés de type uranium oxyde, les déchets liquides ultimes de haute activité sont conditionnées dans des verres par un procédé en deux étapes, calcination puis vitrification. La calcination transforme progressivement le déchet liquide en un résidu sec, qui est mélangé à un verre préformé dans un four de fusion. Le calcinateur est constitué d’un tube tournant chauffé par un four à résistances. Les solutions calcinées sont constituées d’acide nitrique et de composés sous leur forme nitrate ou d’insolubles sous forme d’alliages métalliques. Dans l’objectif d’améliorer la maîtrise du pilotage du calcinateur, il est proposé de le modéliser.
La modélisation va consister à créer puis coupler trois modèles :
• Un modèle thermodynamique permettant de représenter les transformations subies par la matière. Cette partie fera très certainement appel à des mesures ATD et ATG, couplées très certainement à une démarche de type plan d’expériences (1ère année).
• Un modèle d’écoulement de la matière. Il existe déjà dans la littérature des principes de représentation très simplifié d’écoulement dans un calcinateur en tube tournant, mais il faudra faire preuve d’innovation notamment en définissant des tests pour caractériser l’écoulement de la matière au cours du processus de calcination (2ème année).
• Un modèle thermique qui prendra en compte les échanges entre le four et le tube du calcinateur mais également les échanges entre la matière et le tube. Des caractérisations de coefficients d’échanges devront être réalisées(1ère année).
Le couplage de ces trois modèles (3ème année) donnera naissance à une première modélisation simplifiée de la calcination. Ce modèle sera utilisé pour aider au pilotage de l’étape de calcination mais également pour former les opérateurs au pilotage de cet appareil.
Vous évoluerez au sein du LDPV, une équipe pluridisciplinaire (procédé, chimie, mécanique des fluides, modélisation, mécanique, induction) composée de 16 ingénieurs et techniciens. Equipe de 30 ans d’expérience en procédé de vitrification reconnue au niveau national et international
Développement d'électrodes négatives en couches minces pour accumulateurs tout-solides "Li-free"
L'objectif de cette thèse est de développer des électrodes négatives dites ‘Li-free’ pour de nouvelles générations de batteries au lithium tout solides à forte densité d’énergie. La fonction de ce type d’électrode est d’apporter un gain significatif en densité d’énergie au niveau de l’accumulateur, de faciliter sa fabrication en s’affranchissant de la manipulation du lithium métal, et avant tout, à permettre la formation d’un film homogène de lithium, exempt de dendrites lors la charge de l’accumulateur.
Ces électrodes seront basées sur la fonctionnalisation d’un collecteur métallique par des matériaux en couches minces, comportant au moins un matériau lithiophile (typiquement un composé alliable avec le lithium) et un conducteur ionique inorganique. La préparation de ces électrodes fera appel à des procédés de dépôt physique sous vide tels que la pulvérisation cathodique ou l’évaporation thermique. Il s’agira donc d’étudier l’influence de la composition et de la structuration de la couche lithiophile sur le mécanisme de nucléation et de croissance du film de lithium, et sur l’évolution de l’électrode au cours des cycles de charge/décharge. Le rôle des interactions chimiques/mécaniques avec la couche conductrice ionique sera également scruté.
Cette thèse qui s’inscrit dans un projet collaboratif national CEA/CNRS s’effectuera sur le site du CEA Tech à Pessac qui dispose d’un parc complet d’équipements de dépôt sous vide et de caractérisation des couches minces, en étroite collaboration avec l’ICMCB de Bordeaux. Elle bénéficiera des nombreux moyens de caractérisation (microscopie optique confocale, MEB/cryo FIB, ToF-SIMS, RMN, µ-DRX, AFM,...) disponibles au sein des différents laboratoires partenaires du projet.
Amélioration des performances des CMOS par l’optimisation conjointe de la lithographie et du design
Lors du développement de nouvelles technologies (ex. FDSOI 10nm), les règles de dessin constituent le « code de la route » du designer (DRM). Elles sont définies afin de prendre en compte les contraintes électriques - physiques des circuits ainsi que celles issues des procédés de patterning et de lithographie en particulier. Le monde des designers et celui des lithographes étant relativement séparé, ces règles de dessin ne sont souvent pas optimales (sous-estimation des capabilités de lithographie, méconnaissance de l’impact des règles sur les performances des CMOS).
L’objectif de cette thèse est de montrer que l’utilisation d’un jumeau numérique de lithographie peut permettre d’améliorer les performances des CMOS par co-optimisation du design et de la lithographie (DTCO).
Sur la base d’un cas pratique des technologies CMOS avancées et à l’aide d’un jumeau numérique de lithographie, il s’agira de
- Développer de nouvelles méthodes de caractérisation du domaine de validité d’un procédé de lithographie (hotspot prédiction)
- Confronter la pertinence des règles de dessin vis-à-vis de ce domaine de validité
- Quantifier l’impact de la lithographie au travers des règles de dessin sur les performances électriques des dispositifs.
- Identifier les limitations process ou design les plus significatives afin de les challenger
La thèse se déroulera au CEA-Leti à Grenoble, acteur reconnu pour l’excellence de ses travaux de recherche dans le domaine de la microélectronique. Plus précisément, l’étudiant(e) sera rattaché(e) au Laboratoire de PAtterning Computationnel (LPAC) qui explore l’amélioration des procédés de lithographie et de gravure en s’appuyant sur des outils numériques les plus avancés. L’étudiant aura accès à ces outils ainsi qu’aux moyens de caractérisation et de fabrication 300mm de la salle blanche du CEA-Leti. L’étudiant(e) sera amené(e) à publier et à partager ses travaux lors de différentes conférences internationales.
Constructions à sécurité CCA pour le FHE
Le chiffrement homomorphe (FHE) est un corpus de techniques cryptographiques permettant le calcul directement sur les chiffrés. Depuis ses débuts, il y a une quinzaine d’années, le FHE a fait l’objet de nombreuses recherches en vue d’améliorer son efficacité calculatoire. Toutefois, sur le plan de la sécurité, le FHE pose encore de nombreuses questions. En particulier, tous les FHE utilisés en pratique (BFV, BGV, CKKS et TFHE) n’atteignent que le niveau de sécurité CPA (qui permet essentiellement de se prémunir contre des adversaires dit passifs).
Ces dernières années, plusieurs travaux ont donc étudié la sécurité du FHE dans le régime au-delà de CPA et introduit de nouvelles notions de sécurité (CPAD, FuncCPA, vCCA, vCCAD, …). Ces travaux ont conduit à de nouvelles attaques, de nouvelles constructions et, globalement, une meilleure compréhension de la sécurité du FHE dans ce régime.
Concernant la sécurité CCA, des travaux très récents (2024) ont défini de nouvelles notions strictement plus forte que CCA1 et ont démontré qu’elles pouvaient en théorie être atteintes par des schémas FHE exacts ou approchés. Avec ces avancées comme point de départ, la présente thèse visera à concevoir de nouveau schémas cryptographiques pratiques offrant à la fois de la malléabilité et des propriétés de sécurité CCA, au moins pour des applications spécifiques.
Architecture évolutive de clusters programmables basée sur un réseau sur puce (NoC) pour les applications d'IA futures
Contexte technique et scientifique
L'intelligence artificielle (IA) s'impose aujourd'hui comme un domaine majeur, touchant des secteurs variés tels que la santé, l'automobile, la robotique, et bien d'autres encore. Les architectures matérielles doivent désormais faire face à des exigences toujours plus élevées en matière de puissance de calcul, de faible latence et de flexibilité. Le réseau sur puce (NoC, Network-on-Chip) est une technologie clé pour répondre à ces défis, offrant une interconnexion efficace et scalable au sein de systèmes multiprocesseurs. Cependant, malgré ses avantages, la conception de NoC pose des défis importants, notamment en termes d'optimisation de la latence, de la consommation d’énergie et de l’évolutivité.
Les architectures de clusters programmables s'avèrent particulièrement prometteuses pour l'IA, car elles permettent d’adapter les ressources en fonction des besoins spécifiques des algorithmes d'apprentissage profond et d'autres applications d'IA intensives. En combinant la modularité des clusters avec les avantages des NoC, il est possible de concevoir des systèmes capables de traiter des charges de travail d'IA toujours plus importantes, tout en assurant une efficacité énergétique et une flexibilité maximales.
Description du Sujet
Le sujet de thèse propose la conception d'une architecture de cluster programmable, scalable, basée sur un réseau sur puce, dédiée aux futures applications d'IA. L'objectif principal sera de concevoir et d'optimiser une architecture NoC qui permettra de répondre aux besoins des applications d'IA en termes de calcul intensif et de transmission de données efficace entre les clusters de traitement.
Les travaux de recherche se concentreront sur les aspects suivants :
1. Conception de l'architecture NoC : Développer un réseau sur puce évolutif et programmable qui permette de connecter de manière efficace les différents clusters de traitement de l’IA.
2. Optimisation des performances et de l'efficacité énergétique : Définir des mécanismes pour optimiser la latence et la consommation d'énergie du système, en fonction de la nature des charges de travail d'IA.
3. Flexibilité et programmabilité des clusters : Proposer une architecture modulaire et programmable permettant d’allouer les ressources de manière dynamique selon les besoins spécifiques de chaque application d'IA.
4. Évaluation expérimentale : Implémenter et tester des prototypes de l'architecture proposée pour valider ses performances sur des cas d’utilisation concrets, tels que la classification d'images, la détection d'objets ou le traitement de données en temps réel.
Les résultats de cette recherche pourront contribuer à l’élaboration de systèmes embarqués et de solutions d’IA de pointe, optimisés pour les nouvelles générations d'applications et d’algorithmes d'intelligence artificielle.
Les travaux seront valorisés à travers la rédaction de publications scientifiques dans des conférences et des journaux, ainsi que potentiellement des brevets.
Rôle de l'eau à l'interface d'un collage direct hydrophile
L'industrie microélectronique utilise de plus en plus la technologie du collage direct hydrophile pour réaliser des substrats et des composants innovants. Les équipes du CEA LETI sont leaders dans ce domaine depuis plus de 20 ans et proposent des études scientifiques et technologiques sur le sujet.
Le rôle clé de l'eau à l'interface de collage peut être mieux compris grâce à une nouvelle technique de caractérisation développée au CEA LETI. L'objectif de cette thèse est de confirmer ou d'infirmer les mécanismes physico-chimiques en jeu à l'interface de collage, en fonction des préparations de surface et des matériaux en contact.
Une grande partie de ce travail sera réalisée sur nos outils en salle blanche. La caractérisation de l'hydratation des surfaces par cette technique originale sera complétée par des caractérisations classiques telles que les mesures d'énergie d'adhésion et d'adhérence, les analyses FTIR-MIR et SIMS, et la réflectivité des rayons X à l'ESRF.
Développement de sources de photons multiplexées pour les technologies quantiques
Les technologies de l’information quantique offrent de nombreuses promesses notamment dans le domaine du calcul et des communications sécurisées. Parmi la diversité de technologies possibles, les qubits photoniques, du fait de leur excellente robustesse à la décohérence sont particulièrement intéressants pour les communications quantiques, y compris à température ambiante. Ils offrent également une alternative à d’autres technologies de qubits dans le cadre du calcul quantique. Afin de déployer à grande échelle ces applications, il est nécessaire de disposer de dispositifs compacts, bon marché, en grand nombre. La photonique sur silicium est une plate-forme attractive pour parvenir à cet objectif, en implémentant différents composants clé de génération, manipulation et détection de qubits photoniques.
La génération de photons à l’état solide peut se faire par différents processus physiques. Parmi ceux-là, la génération non-linéaire de paires de photons présente différents attraits tels que le fonctionnement à température ambiante, la possibilité d’utiliser la paire de photons comme source de photons uniques annoncés, sources de paires de photons intriqués…
Votre rôle consistera à travailler au développement, au suivi de fabrication et à la caractérisation en laboratoire de sources de photons paramétriques multiplexée dans des matériaux à base de silicium afin de surpasser les limites inhérentes au processus physique de génération de paires de photons. Dans l’objectif d’une intégration complète sur une unique puce, il est notamment essentiel de pouvoir filtrer efficacement la lumière indésirable, afin de ne garder que les photons d’intérêt. C’est pourquoi un accent particulier sera également mis sur ces filtres.
Optimisations matérielles pour une IA générative efficace avec les réseaux Mamba
L'IA générative a le potentiel de transformer diverses industries. Cependant, les modèles actuels de pointe comme les transformers rencontrent des défis significatifs en termes d'efficacité computationnelle et de mémoire, notamment lorsqu'ils sont déployés sur des matériels à ressources limitées. Cette recherche de doctorat vise à résoudre ces problèmes en optimisant les réseaux Mamba pour des applications matérielles. Les réseaux Mamba offrent une alternative prometteuse en réduisant la complexité quadratique des mécanismes d'attention par des choix architecturaux innovants. En utilisant des techniques comme les motifs d'attention éparses et le partage efficace des paramètres, les réseaux Mamba peuvent générer des données de haute qualité avec des besoins en ressources beaucoup plus faibles. La recherche se concentrera sur la mise en œuvre d'optimisations matérielles pour améliorer l'efficacité des réseaux Mamba, les rendant adaptés aux applications en temps réel et aux dispositifs embarqués. Cela inclut l'optimisation des temps de formation et d'inférence, ainsi que l'exploration des accélérations matérielles potentielles. L'objectif est d'avancer le déploiement pratique de l'IA générative dans des domaines à ressources limitées, contribuant ainsi à son adoption plus large et à son impact.
Exploration d’approches non supervisés pour modéliser l’environnement à partir de données RADAR
Les technologies RADAR ont gagné en intérêt ces dernières années, notamment avec l'émergence des radars MIMO et des "Imaging Radars 4D". Cette nouvelle génération RADAR offre des opportunités mais aussi des défis pour le développement d'algorithmes de perception. Les algorithmes traditionnels comme la FFT, le CFAR et le DOA sont efficaces pour la détection de cibles en mouvement, mais les nuages de points générés sont encore trop épars pour une modélisation d'environnement précise. C’est une problématique cruciale pour les véhicules autonomes et la robotique.
Cette thèse propose d'explorer des techniques de Machine Learning non-supervisé pour améliorer la modélisation d'environnement à partir de données RADAR. L'objectif est de produire un modèle d'environnement plus riche, avec une meilleure densité et description de la scène, tout en maîtrisant le coût calculatoire pour une exploitation en temps réel. La thèse abordera les questions du type de données RADAR sont les plus adaptés en entrée des algorithmes ainsi que pour représenter l’environnement. Le candidat devra explorer des solutions algorithmiques non-supervisées et rechercher les optimisations de calcul pouvoir rendre ces solutions compatibles avec le temps réel.
Ces solutions devront à terme être conçues pour être embarquées au plus proche du capteur, afin d'être exécutées sur des cibles contraintes.