Mécanismes de communications unidirectionnelles pour la décomposition de données des applications de transport de particules Monte-Carlo

Dans le cadre d’un calcul Monte-Carlo d’évolution d’un cœur de REP (réacteur à eau pressurisée), il est nécessaire de calculer un très grand nombre de taux de réaction neutron-noyau, impliquant un volume de données pouvant dépasser la capacité mémoire d’un nœud de calcul sur les supercalculateurs actuels. Dans le cadre de Tripoli-5, les architectures à mémoire distribuée ont été identifiées comme cible pour le déploiement de calcul à haute performance. Pour exploiter de telles architectures il convient donc d’utiliser des approches de décomposition de données, notamment sur les taux de réaction. Toutefois, avec une méthode de parallélisation classique, les processus n’ont pas d’affinité particulière pour les taux qu’ils hébergent localement ; au contraire, chaque taux reçoit des contributions de manière uniforme de tous les processus. Les accès aux données décomposées peuvent s’avérer coûteux quand ces derniers imposent une utilisation intensive des communications. Toutefois, des mécanismes de communications unidirectionnelles comme par exemple les MPI RMA (Message Passing Interface, Remote Memory Access) permettent de faciliter ses accès aussi bien en termes d’expressions que de performances.
L’objectif de cette thèse est de proposer une méthode de décomposition partielle de données en s’appuyant sur des mécanismes de communications unidirectionnelles pour accéder aux données stockées à distance, telles que les taux de réaction. Une telle approche permettra de réduire considérablement le volume de donnée stocké en mémoire sur chaque nœud de calcul sans engendrer une forte dégradation des performances.

Optimisation de la dégradation enzymatique du PLA pour la production de biohydrogène (BioH2) par photofermentation.

Ce projet de thèse propose une approche innovante pour produire du biohydrogène (BioH2) à partir de la dégradation enzymatique du PLA (acide polylactique), un bioplastique difficile à recycler. L’objectif est d’optimiser l’hydrolyse du PLA en acide lactique, un substrat directement métabolisable par des bactéries pourpres non sulfureuses (PNSB) pour générer du BioH2 en conditions anoxygéniques. Le travail consistera à sélectionner des estérases performantes (en collaboration avec le Génoscope CEA), à les exprimer de manière soluble dans des hôtes modèles (E. coli, levures, PNSB), et à optimiser les conditions réactionnelles (pH, température, concentration) pour maximiser la production d’acide lactique. Une seconde phase visera à améliorer la photofermentation dans un photobioréacteur (PBR) équipé de systèmes de contrôle avancés (LED, IA, CFD). Ce projet, financé par le CEA et le PUI Grenoble Alpes, s’inscrit dans une démarche d’économie circulaire et vise à développer un procédé scalable pour valoriser les déchets PLA en énergie renouvelable, en lien avec les enjeux de la transition énergétique

Nouvelle génération de substrats organiques pour la conversion d'énergie électrique

Les récentes avancées dans les moteurs électriques et l'électronique de puissance associée engendrent une hausse significative des besoins en densité de puissance. Cette augmentation de la densité de puissance implique ainsi des surfaces d'échange thermique réduites, ce qui amplifie les défis liés à l'évacuation de la chaleur due aux pertes produites par les composants d’électronique de puissance lors de leur fonctionnement. En effet, l'absence d'une dissipation adéquate entraîne une surchauffe des composants électroniques, impactant leurs performances, durabilité et fiabilité. D’autres problématiques liées au coût, à la réparabilité et aux contraintes thermomécaniques remettent en question les interfaces thermiques isolantes traditionnelles réalisées à base de céramique. Ainsi, il est impératif de développer une nouvelle génération de matériaux dissipateurs thermiques prenant en considération l’environnement du système.

L’objectif de cette thèse est de substituer dans les systèmes de modules de puissance le substrat céramique, qui a pour rôle principal d’être la couche diélectrique du système, par un composite à matrice organique thermo-conducteur. Le substrat actuel présente des limitations bien connues (fragilité, mauvaise interface, limite de cyclage, coût). Le substrat organique devra avoir une conductivité thermique la plus élevée possible (>3 W/m.k) afin de dissiper convenablement la chaleur émise tout en étant isolant électrique avec une tension de claquage d’environ 3kV/mm. Il devra également avoir un coefficient d’expansion thermique (CTE) compatible avec celui du cuivre afin de supprimer les phénomènes de délamination lors des cyclages subis par le dispositif pendant son temps de vie. L’innovation des travaux du doctorant résidera dans l’utilisation de (nano)charges très conductrices thermiquement qui seront isolées électriquement (revêtement isolant) et pourront être orientées dans une résine polymère sous stimulus externe. Le développement du revêtement isolant électrique sur le cœur thermo-conducteur se fera par voie sol-gel. La synthèse sera contrôlée et optimisée en vue de corréler l’homogénéité et l’épaisseur du revêtement aux performances diélectriques et thermique du (nano)composite. L’interface charge/matrice (source potentielle de diffraction des phonons) sera également étudiée. Un second volet portera sur le greffage de nanoparticules magnétiques (NPM) sur les (nano)charges thermo-conductrices. Des NPM commerciales seront évaluées (selon les besoins des nuances synthétisées en laboratoire pourront être également évaluées). Les (nano)composites devront posséder une rhéologie compatible avec les procédés de pressage et/ou d’injection.

Architecture innovante et traitement du signal pour des télécommunications optiques mobiles

Les communications optiques en espace libre reposent sur la transmission de données par la lumière entre deux points distants, sans recourir à des fibres ou à des câbles. Cette approche s’avère particulièrement intéressante lorsque les connexions filaires sont difficiles à déployer ou trop coûteuses.
Cependant, ces liaisons sont fortement affectées par les conditions atmosphériques : brouillard, pluie, poussières et turbulences thermiques atténuent ou déforment le faisceau lumineux, entraînant une dégradation notable de la qualité de la communication. Les solutions existantes restent coûteuses et limitées, tant du point de vue des dispositifs optiques de compensation que des algorithmes de traitement du signal.

Dans ce cadre, la thèse vise à concevoir des liaisons optiques mobiles performantes et robustes, capables de s’adapter à des environnements dynamiques et perturbés. L’étude portera notamment sur l’exploitation de dispositifs de type Optical Phased Array (OPA) sur Silicium — une technologie issue des systèmes LiDAR « low cost » — offrant une voie prometteuse vers des architectures compactes, intégrées et à faible coût.
L’orientation principale des travaux concernera le développement d’approches algorithmiques avancées pour le traitement et la compensation du signal. Le ou la doctorant·e sera amené·e à concevoir un environnement de simulation dédié, permettant d’évaluer et de valider les choix architecturaux et les stratégies algorithmiques avant toute expérimentation pratique.

L’objectif global est de proposer une architecture intégrée, flexible et fiable, garantissant la continuité des communications optiques en mouvement, avec des applications potentielles dans les domaines aérien, spatial et terrestre.

Localisation et Cartographie Coopératives via des Méthodes d’Apprentissage Exploitant les Multi-trajets Radio

Dans le cadre de cette thèse, on se propose d'explorer le potentiel des méthodes d'apprentissage machine (ML) pour assurer des fonctions simultanées de localisation et de cartographie (SLAM), en s’appuyant sur des signaux multi-trajets transmis entre plusieurs dispositifs radio coopératifs.
L'idée consiste à identifier certaines caractéristiques des canaux de propagation observés conjointement sur plusieurs liens radio, afin de déterminer les positions relatives des dispositifs radio mobiles, ainsi que celles d’objets passifs présents dans leur voisinage. Ces caractéristiques radio reposent typiquement sur les temps d'arrivée d‘échos multiples des signaux transmis. L'approche envisagée doit alors bénéficier de la corrélation de ces trajets multiples au gré du déplacement des dispositifs radio, ainsi que de la diversité spatiale et de la redondance d’information autorisées par la coopération entre ces mêmes dispositifs. Les solutions développées seront évaluées sur la base de mesures indoor collectées à partir des dispositifs ultra large bande intégrés, ainsi que de données synthétiques générées à l'aide d'un simulateur de type « tracer de rayons ».
Les applications possibles concernent la navigation de groupe au sein d’environnements complexes et/ou inconnus (ex. flottes de drones ou de robots, pompiers...).

Fonctions optiques intégrées sur plan focal micro-bolométrique pour l’imagerie infrarouge non refroidie

L’imagerie infrarouge en bande thermique (longueurs d’onde 8-14 µm) est un domaine en forte croissance, particulièrement dans les domaines de l’industrie, du transport, de l’environnement. Elle s’appuie sur une technologie de détection, les microbolomètres, pour laquelle le CEA-Léti est au meilleur niveau de l’état de l’art mondial. L’intégration de fonctions optiques avancées directement sur les détecteurs est une voie très prometteuse pour gagner en performance, en compacité et en coût dans les futures caméras infrarouges.
Les fonctions optiques envisagées comprennent le filtrage spectral, la polarimétrie, la correction de front d’onde, etc. Certaines visent à enrichir l’image par des informations indispensables aux applications telles que la thermographie absolue (mesure de température et d’émissivité), l’identification pour l’interprétation automatique de scène (machine vision), la détection de gaz, etc.
Les travaux proposés comprendront des activités de conception, réalisation et caractérisation électro-optique de matrices de microbolomètres fonctionnalisés. La conception de ces fonctions optiques utilisera des moyens de simulation 3D électromagnétique, elle prendra en compte leur compatibilité avec nos technologies de microbolomètres et les capacités de nos moyens de micro-fabrication. La réalisation se fera dans les salles blanches du CEA-Léti par des personnels dédiés mais le (la) candidat(e) prendra part à la définition et au suivi des travaux. Enfin, les caractérisations optiques et électro-optiques seront faites dans notre laboratoire, si besoin avec le développement de bancs de caractérisation dédiés.

Simulations hydrodynamiques de matériaux poreux pour l'endommagement ductile

Le comportement mécanique des matériaux métalliques sous sollicitation fortement dynamique (choc), et en particulier leur endommagement, est une thématique d'intérêt pour le CEA-DAM. Pour le tantale, l'endommagement est de nature ductile : par germination, croissance et coalescence de pores (vides) au sein du matériau. Les modèles usuels d'endommagement ductiles ont été développés à partir d'hypothèses simplificatrices de pores isolés dans la matière. Cependant des études récentes par simulations directes décrivant explicitement une population de pores répartis dans le matériau (ainsi que des observations expérimentales après rupture) ont montré l'importance de l'interaction entre pores pour la prévision de l'endommagement ductile. Toutefois, les mécanismes microscopiques de cette interaction restent à élucider. De plus, ces études numériques doivent être étendues aux échelles de longueur et de vitesses de sollicitation d'intérêt.
L'objectif de la thèse est d'étudier les phases de croissance et de coalescence de l'endommagement ductile au travers de simulations numériques directes d'un milieux poreux soumis à une sollicitation dynamique. Des simulations hydrodynamiques, dans lesquelles des pores seront maillés explicitement au sein d'une matrice continue, seront utilisées afin de se placer aux échelles d'intérêt de temps et de longueur. Le suivi de la population de pores au cours de la simulation renseignera à différents niveaux sur l'influence de l'interaction entre pores pendant l'endommagement ductile. D'abord, le comportement du massif sera comparé à celui prédit par les modèles classiques à pores isolés, montrant l'effet macroscopique de l'interaction entre pores. On s'intéressera également à l'évolution de la distribution de tailles dans la population de pores. Enfin, un dernier objectif sera de comprendre l'interaction microscopique pore à pore. Afin de tirer parti de la richesse des résultats de simulation, des approches issues de l'intelligence artificielle (réseau de neurones sur le graphe associé à la population de pores) seront utilisées afin d'apprendre le lien entre voisinage d'un pore et croissance de celui-ci.
Le/la doctorant(e) aura l'occasion de développer ses compétences en physique des chocs et en mécanique, en simulations numériques (avec l'accès aux supercalculateurs du CEA-DAM) et en science des données.

Modélisation des phénomènes thermo-aérauliques dans la tuyère plasma du procédé ELIPSE

Le procédé ELIPSE (Élimination de LIquides par Plasma Sous Eau) est une technologie innovante dédiée à la minéralisation des effluents organiques. Il repose sur la génération d’un plasma thermique en immersion totale dans une enceinte réacteur remplie d’eau, permettant d’obtenir des températures très élevées et des conditions réactives favorables à la décomposition complète des composés organiques.
Le travail de thèse proposé a pour objectif le développement d’un modèle numérique multi-physique décrivant le comportement du procédé, en particulier dans la tuyère plasma, zone clé où le jet gazeux à haute température issu de la torche interagit avec les liquides injectés.
La démarche reposera sur la modélisation thermo-aéraulique couplée, intégrant la dynamique des écoulements, les transferts thermiques, les changements de phase et la turbulence. L’utilisation d’outils de simulation numérique (CFD) permettra de caractériser les mécanismes d’interaction plasma/liquide et d’optimiser la géométrie et les conditions opératoires du procédé. Cette modélisation sera confrontée et validée par des expérimentations complémentaires, réalisées sur le procédé ELIPSE, afin d’acquérir les données nécessaires à la calibration et à la validation du modèle numérique.
Ces travaux s’inscrivent en complément de recherches antérieures ayant conduit à l’élaboration de modèles du comportement thermique et hydraulique de la torche plasma et de l’enceinte réacteur. L’intégration du modèle développé au sein de cet ensemble permettra d’aboutir à une représentation globale et cohérente du procédé ELIPSE. Une telle approche constitue une étape déterminante en vue de l’optimisation du procédé et de son passage à l’échelle industrielle.
Le profil recherché pour ce projet est celui d’un(e) étudiant(e) en dernière année de master ou d’école d’ingénieur, issu(e) d’une formation en génie des procédés et/ou en simulation numérique, disposant d’un goût prononcé pour la modélisation.
Au cours de cette thèse, le doctorant développera et renforcera ses compétences en modélisation numérique multi-physique, en simulation CFD avancée et en analyse thermo-aéraulique de procédés complexes. Il acquerra également une solide expérience dans le traitement des déchets, thématique en plein essor au niveau industriel et environnemental. Ces compétences offriront de réelles opportunités professionnelles dans les domaines de la recherche appliquée, de l’ingénierie des procédés, de l’énergie et de l’environnement.

Cadre MBSE augmenté par l’Intelligence Artificielle pour l’analyse conjointe de la sureté et de la sécurité des systèmes critiques

Les systèmes critiques doivent respecter simultanément des exigences de Sureté de fonctionnement (prévenir les défaillances involontaires pouvant entraîner des dommages) et de Sécurité (protéger contre les attaques malveillantes). Traditionnellement, ces deux domaines sont traités séparément, alors qu’ils sont interdépendants : Une attaque (Sécurité) peut déclencher une défaillance (Sureté), et une faille fonctionnelle peut être exploitée comme vecteur d’attaque.
Les approches MBSE permettent une modélisation rigoureuse du système, mais elles ne capturent pas toujours les liens explicites entre la Sureté [1] et Sécurité [2] ; les analyses de risques sont manuelles, longues et sujettes à erreurs. La complexité des systèmes modernes rend nécessaire l’automatisation de l’évaluation des compromis Sureté-Securité.
La modélisation MBSE conjointe sureté/sécurité a été largement abordé dans plusieurs travaux de recherche tels que [3], [4] et [5]. Le verrou scientifique de cette thèse consiste à utiliser l’IA pour automatiser et améliorer la qualité des analyses. Quel type d’IA devrons nous utiliser pour chaque étape d’analyse ? Comment détecter les conflits entre les exigences de sécurité et de sureté ? Quelle sont les critères pour évaluer l’apport de l’IA dans l’analyse conjointe sureté/sécurité…

Influence de la démontabilité des systèmes batteries sur leurs impacts environnementaux

Avec l'essor de la mobilité électrique et du stockage d'énergie, la demande en batteries explose. Mais cette croissance soulève une question essentielle : comment concevoir des batteries à la fois performantes, durables et plus respectueuses de l'environnement ?
Sans regarder la chimie de la cellule, l'une des pistes prometteuses est la démontabilité : rendre les packs batteries plus faciles à démonter permettrait de faciliter leur réparation, réutilisation ou recyclage. Cependant, un design plus démontable peut aussi augmenter sa masse ou réduire la fiabilité du système, et donc impacter sa durée de vie globale.
Cette thèse propose de relever ce défi en développant une méthode d'analyse capable de relier la conception de batteries démontables à leurs impacts environnementaux réels, tout en intégrant la question de la fiabilité. La ou le doctorant(e) évaluera la démontabilité de différents systèmes batteries, quantifiera les gains et pertes environnementaux associés, et contribuera à la mise au point d'un outil d'aide à la décision pour guider les choix de conception. Le travail proposé fera appel, entre autres, à la modélisation sous logiciel d'Analyse du Cycle de Vie (ACV) couplée à des modèles de performance et de vieillissement de batterie et à des probabilités de défaillance.
Ce travail s'inscrit dans un contexte technologique marqué par la recherche de circularité des ressources, les enjeux d'automatisation du démontage, et les nouvelles réglementations européennes sur les batteries. Il offrira une occasion unique de contribuer à la conception des batteries de demain, plus durables.

Top