Module d’auto-adaptation d’antenne et synthèse d’impédance intégré dans la bande sub-6 GHz pour les applications RF de nouvelle génération

L’adoption croissante des systèmes RF sub-6 GHz pour la 5G, l’IoT et les technologies portables a créé une demande critique pour des solutions compactes, efficaces et adaptatives afin d’améliorer le transfert d’énergie, de réduire les effets de désaccord liés à l’environnement, et d’offrir des capacités avancées de détection. Cette thèse propose un système innovant sur puce (SoC) intégrant une unité d’accord d’antenne (ATU) et un module d’impédance synthétisée (SIM) pour répondre à ces défis. En combinant la mesure d’impédance in situ et une réadaptation dynamique, le système résout une limitation majeure des antennes miniatures : leur sensibilité extrême aux perturbations environnementales, telles que la proximité du corps humain ou des surfaces métalliques. De plus, l’intégration du module d’impédance synthétisée apporte une polyvalence supplémentaire en permettant l’émulation de charges complexes. Cette capacité optimise non seulement le transfert d’énergie, mais ouvre également la voie à des fonctionnalités avancées, comme la caractérisation de matériaux et la détection de l’environnement autour de l’antenne.
L’un des axes centraux de cette recherche est la co-intégration d’un analyseur de réseau vectoriel (VNA) avec un réseau de post-matching large bande (PMN) et un module d’impédance synthétisée. Cette architecture combinée offre une surveillance en temps réel de l’impédance, un ajustement dynamique et la génération de profils d’impédance spécifiques, essentiels pour caractériser la réponse de l’antenne dans différents scénarios. Un fonctionnement garanti dans la bande 100 MHz–6 GHz est assuré tout en maintenant une faible consommation d’énergie grâce à une gestion efficace des cycles d’activité.

Profil recherché : vous êtes passionné(e) par l’électronique et la microélectronique, et souhaitez contribuer à une avancée technologique majeure ? Nous recherchons un(e) candidat(e) motivé(e) et curieux(se), doté(e) des qualités suivantes :
. Formation : Diplômé(e) d’une école d’ingénieurs ou titulaire d’un master en électronique ou microélectronique.
. Compétences techniques :
Solides connaissances en technologies transistors (CMOS, Bipolaire, GaN…).
Expertise en conception analogique/RF.
Expérience avec des outils de conception tels qu’ADS et/ou Cadence.
Programmation : Compétences de base en Python, MATLAB ou autres langages similaires.
Expérience complémentaire : Une première expérience en conception de circuits intégrés serait un atout précieux.
. Pourquoi postuler : vous aurez l’opportunité de travailler sur des technologies de pointe au sein d’un environnement de recherche innovant et collaboratif. Vous serez accompagné(e) par des experts renommés du domaine pour relever des défis scientifiques et techniques stimulants.

Contacts : PhD.Ghita Yaakoubi KHBIZA : ghita.yaakoubikhbiza@cea.fr, HDR.Serge Bories : serge.bories@cea.fr

Modélisation de la réponse instrumentale des télescopes spatiaux avec un modèle optique différentiable

Contexte

L'effet de lentille gravitationnelle faible [1] est une sonde puissante de la structure à grande échelle de notre univers. Les cosmologistes utilisent l'effet de lentille faible pour étudier la nature de la matière noire et sa distribution spatiale. Les missions d'observation de l'effet de lentille faible nécessitent des mesures très précises de la forme des images de galaxies. La réponse instrumentale du télescope, appelée fonction d'étalement du point (PSF), produit une déformation des images observées. Cette déformation peut être confondue avec les effets d'un faible effet de lentille sur les images de galaxies, ce qui constitue l'une des principales sources d'erreur systématique lors de la recherche sur les faibles effets de lentille. Par conséquent, l'estimation d'un modèle de PSF fiable et précis est cruciale pour le succès de toute mission de faible lentille [2]. Le champ de la PSF peut être interprété comme un noyau convolutionnel qui affecte chacune de nos observations d'intérêt, qui varie spatialement, spectralement et temporellement. Le modèle de la PSF doit être capable de gérer chacune de ces variations. Nous utilisons des étoiles spécifiques considérées comme des sources ponctuelles dans le champ de vision pour contraindre notre modèle PSF. Ces étoiles, qui sont des objets non résolus, nous fournissent des échantillons dégradés du champ de la PSF. Les observations subissent différentes dégradations en fonction des propriétés du télescope. Ces dégradations comprennent le sous-échantillonnage, l'intégration sur la bande passante de l'instrument et le bruit additif. Nous construisons finalement le modèle de la PSF en utilisant ces observations dégradées et utilisons ensuite le modèle pour déduire la PSF à la position des galaxies. Cette procédure constitue le problème inverse mal posé de la modélisation de la PSF. Voir [3] pour un article récent sur la modélisation de la PSF.

La mission Euclid récemment lancée représente l'un des défis les plus complexes pour la modélisation de la PSF. En raison de la très large bande passante de l'imageur visible (VIS) d'Euclid, allant de 550 nm à 900 nm, les modèles de PSF doivent capturer non seulement les variations spatiales du champ de PSF, mais aussi ses variations chromatiques. Chaque observation d'étoile est intégrée avec la distribution d'énergie spectrale (SED) de l'objet sur l'ensemble de la bande passante du VIS. Comme les observations sont sous-échantillonnées, une étape de super-résolution est également nécessaire. Un modèle récent appelé WaveDiff [4] a été proposé pour résoudre le problème de modélisation de la PSF pour Euclid et est basé sur un modèle optique différentiable. WaveDiff a atteint des performances de pointe et est en train d'être testé avec des observations récentes de la mission Euclid.

Le télescope spatial James Webb (JWST) a été lancé récemment et produit des observations exceptionnelles. La collaboration COSMOS-Web [5] est un programme à grand champ du JWST qui cartographie un champ contigu de 0,6 deg2. Les observations de COSMOS-Web sont disponibles et offrent une occasion unique de tester et de développer un modèle précis de PSF pour le JWST. Dans ce contexte, plusieurs cas scientifiques, en plus des études de lentille gravitationnelle faible, peuvent grandement bénéficier d'un modèle PSF précis. Par exemple, l'effet de lentille gravitationnel fort [6], où la PSF joue un rôle crucial dans la reconstruction, et l'imagerie des exoplanètes [7], où les speckles de la PSF peuvent imiter l'apparence des exoplanètes, donc la soustraction d'un modèle de PSF exact et précis est essentielle pour améliorer l'imagerie et la détection des exoplanètes.

Projet de doctorat

Le candidat visera à développer des modèles PSF plus précis et plus performants pour les télescopes spatiaux en exploitant un cadre optique différentiable et concentrera ses efforts sur Euclid et le JWST.

Le modèle WaveDiff est basé sur l'espace du front d'onde et ne prend pas en compte les effets au niveau du pixel ou du détecteur. Ces erreurs au niveau des pixels ne peuvent pas être modélisées avec précision dans le front d'onde car elles se produisent naturellement directement sur les détecteurs et ne sont pas liées aux aberrations optiques du télescope. Par conséquent, dans un premier temps, nous étendrons l'approche de modélisation de la PSF en tenant compte de l'effet au niveau du détecteur en combinant une approche paramétrique et une approche basée sur les données (apprises). Nous exploiterons les capacités de différenciation automatique des cadres d'apprentissage automatique (par exemple TensorFlow, Pytorch, JAX) du modèle WaveDiff PSF pour atteindre l'objectif.

Dans une deuxième direction, nous envisagerons l'estimation conjointe du champ de la PSF et des densités d'énergie spectrale (SED) stellaires en exploitant des expositions répétées ou des dithers. L'objectif est d'améliorer et de calibrer l'estimation originale de la SED en exploitant les informations de modélisation de la PSF. Nous nous appuierons sur notre modèle PSF, et les observations répétées du même objet changeront l'image de l'étoile (puisqu'elle est imagée sur différentes positions du plan focal) mais partageront les mêmes SED.

Une autre direction sera d'étendre WaveDiff à des observatoires astronomiques plus généraux comme le JWST avec des champs de vision plus petits. Nous devrons contraindre le modèle de PSF avec des observations de plusieurs bandes pour construire un modèle de PSF unique contraint par plus d'informations. L'objectif est de développer le prochain modèle de PSF pour le JWST qui soit disponible pour une utilisation généralisée, que nous validerons avec les données réelles disponibles du programme COSMOS-Web JWST.

La direction suivante sera d'étendre les performances de WaveDiff en incluant un champ continu sous la forme d'une représentation neuronale implicite [8], ou de champs neuronaux (NeRF) [9], pour traiter les variations spatiales de la PSF dans l'espace du front d'onde avec un modèle plus puissant et plus flexible.

Enfin, tout au long de son doctorat, le candidat collaborera à l'effort de modélisation de la PSF par les données d'Euclid, qui consiste à appliquer WaveDiff aux données réelles d'Euclid, et à la collaboration COSMOS-Web pour exploiter les observations du JWST.

Références

[1] R. Mandelbaum. “Weak Lensing for Precision Cosmology”. In: Annual Review of Astronomy and Astro- physics 56 (2018), pp. 393–433. doi: 10.1146/annurev-astro-081817-051928. arXiv: 1710.03235.
[2] T. I. Liaudat et al. “Multi-CCD modelling of the point spread function”. In: A&A 646 (2021), A27. doi:10.1051/0004-6361/202039584.
[3] T. I. Liaudat, J.-L. Starck, and M. Kilbinger. “Point spread function modelling for astronomical telescopes: a review focused on weak gravitational lensing studies”. In: Frontiers in Astronomy and Space Sciences 10 (2023). doi: 10.3389/fspas.2023.1158213.
[4] T. I. Liaudat, J.-L. Starck, M. Kilbinger, and P.-A. Frugier. “Rethinking data-driven point spread function modeling with a differentiable optical model”. In: Inverse Problems 39.3 (Feb. 2023), p. 035008. doi:10.1088/1361-6420/acb664.
[5] C. M. Casey et al. “COSMOS-Web: An Overview of the JWST Cosmic Origins Survey”. In: The Astrophysical Journal 954.1 (Aug. 2023), p. 31. doi: 10.3847/1538-4357/acc2bc.
[6] A. Acebron et al. “The Next Step in Galaxy Cluster Strong Lensing: Modeling the Surface Brightness of Multiply Imaged Sources”. In: ApJ 976.1, 110 (Nov. 2024), p. 110. doi: 10.3847/1538-4357/ad8343. arXiv: 2410.01883 [astro-ph.GA].
[7] B. Y. Feng et al. “Exoplanet Imaging via Differentiable Rendering”. In: IEEE Transactions on Computational Imaging 11 (2025), pp. 36–51. doi: 10.1109/TCI.2025.3525971.
[8] Y. Xie et al. “Neural Fields in Visual Computing and Beyond”. In: arXiv e-prints, arXiv:2111.11426 (Nov.2021), arXiv:2111.11426. doi: 10.48550/arXiv.2111.11426. arXiv: 2111.11426 [cs.CV].
[9] B. Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”. In: arXiv e-prints, arXiv:2003.08934 (Mar. 2020), arXiv:2003.08934. doi: 10.48550/arXiv.2003.08934. arXiv:2003.08934 [cs.CV].

Développement d’un outil de comparaison multi-critères des systèmes de stockage électrochimiques stationnaires

L’utilisation de systèmes de stockage stationnaire apparaît aujourd’hui incontournable pour accompagner l’évolution du réseau électrique et l’intégration croissante d’énergies renouvelables intermittentes comme le solaire ou l’éolien. Le choix d’une solution de stockage fait appel à de nombreux critères tels que les performances, la durée de vie mais aussi l’impact environnemental, la sécurité, les contraintes règlementaires, sans oublier l’aspect économique.
Le laboratoire dispose d’éléments de comparaison sur ces différents critères, via des études expérimentales et un retour d’expérience sur des systèmes existants. En outre, un premier outil logiciel a été développé pour l’évaluation de l’impact environnemental par ACV (analyse du cycle de vie). L’objectif de ce travail de thèse est d’intégrer ces différentes composantes dans un outil de comparaison plus large avec une approche multi-critères, en ciblant des cas d’étude précis et un nombre limité de technologies de stockage ayant atteint une maturité suffisante pour que les données disponibles soient fiables.

Aciers austénitiques à haute limite d’élasticité pour le nucléaire : conception numérique et étude expérimentale

La thèse s’inscrit dans un projet qui vise à concevoir de nouvelles chimies d’aciers inoxydables austénitiques pour le nucléaire qui soient spécifiquement adaptées aux conditions vues par la pièce en service et à son mode d’élaboration.
Plus précisément, elle concerne les aciers de boulonnerie obtenus par nitruration contrôlée de poudres ultérieurement densifiées par Compression Isostatique à Chaud. Les nuances actuelles présentent en effet des limitations liées à la corrosion sous contrainte, or la nitruration permet d'augmenter la quantité de chrome, ce qui a un effet bénéfique.
Il s'agit d'abord d'établir un cahier des charges et une liste de critères puis de réaliser une optimisation de composition multicritères par calculs CALPHAD dans le système Fe-Cr-Ni-Mo-X-N-C, afin de sélectionner des compositions prometteuses. On passera ensuite à l'élaboration du matériau: étude et modélisation de la nitruration des poudres, nitruration de lopins et densification, traitements thermiques. Une composition sera alors sélectionnée pour passer à une caractérisation poussée: propriétés mécaniques et mécanismes de déformation associés, comportement en corrosion. On s'attachera en particulier à démontrer l'intérêt de la nouvelle nuance par rapport à la nuance actuelle.

Métasurfaces Electromagnétiques à Modulation Spatio-Temporelle pour Systèmes de Communication Multifonctionnels et Durables

Les systèmes sans fil de prochaine génération (XG) envisagent une densification sans précédent des réseaux et une utilisation efficace du spectre proche des ondes millimétriques (mmW). Des concepts disruptifs sont nécessaires pour minimiser le nombre de systèmes d'antennes et leur consommation d'énergie. Les surfaces intelligentes reconfigurables (RIS) peuvent fournir une formation de faisceaux à haut gain à l'aide de dispositifs simples (par exemple, des diodes p-i-n) pour contrôler les propriétés de diffusion de leurs cellules unitaires. Cependant, l'efficacité d'une RIS et les fonctions sans fil qu'elle peut réaliser simultanément sont limitées par sa linéarité et sa réciprocité inhérentes.
Les métasurfaces modulées espace-temps (STMM) ont récemment émergé comme une solution de formation de faisceaux permettant de dépasser les limites fondamentales des systèmes linéaires invariants dans le temps. En tirant parti d'une variation temporelle supplémentaire de la réponse des cellules unitaires, par rapport aux RIS, une STMM peut ajuster simultanément les spectres angulaire et fréquentiel des champs rayonnés, sans recourir à de multiples circuits actifs comme dans les systèmes actuels.
La plupart des modèles de conception des STMM sont simplifiés et considèrent des modulations 1-D dans un régime temporel quasi-statique. L'impact de la discrétisation spatiale et de la quantification de phase est souvent négligé. Les rares prototypes rapportés sont souvent de petite taille électrique, avec une période grossière (demi-longueur d'onde). La plupart des démonstrateurs fonctionnent en réflexion, à des fréquences inférieures à 17 GHz, et ne permettent qu'une résolution de phase d’un bit. Une commande indépendante des faisceaux dans le champ lointain à plusieurs fréquences a été prouvée dans un seul plan de balayage.
Cette thèse de doctorat vise à modéliser, concevoir et démontrer des antennes STMM transmissives de grande taille électrique et multifonctionnelles, avec une résolution de phase et des capacités de formation de faisceaux améliorées. Des modèles numériques efficaces permettront de calculer les champs diffusés par une STMM dans les régions de champs lointain et proche, pour des périodes spatiales et temporelles arbitraires. Des techniques holographiques et de détection compressive seront proposées pour optimiser conjointement le profil de phase de la métasurface et les formes d'onde de modulation temporelle, permettant une mise en forme harmonique des faisceaux. Une étude approfondie de l'effet de la résolution de phase, de la période STMM et de la fréquence de modulation temporelle sur les performances, la consommation d'énergie et la complexité des électroniques de contrôle sera fournie.
Un prototype STMM transmissif basé sur des diodes p-i-n et permettant une résolution de phase de 2 bits sera réalisé pour la première fois, en s'appuyant sur les travaux du labo sur les antennes à lentilles plates électroniquement reconfigurables modulées dans l'espace. Il fonctionnera dans une gamme de fréquences adaptée aux réseaux terrestres et satellitaires (17-31 GHz). Plusieurs fonctionnalités d'antennes seront caractérisées expérimentalement à l'aide du même prototype, telles que : (i) une formation de faisceaux 2D simultanée et non réciproque à différents harmoniques des signaux de modulation temporelle, dans les régions de champ lointain ou proche ; (ii) une mise en forme de motif à la fréquence fondamentale, en utilisant des séquences temporelles optimisées pour augmenter la résolution effective de phase.
Les contributions fondamentales et expérimentales de cette recherche élargiront la compréhension physique des métasurfaces modulées dans le temps et augmenteront la maturité de cette technologie pour des antennes intelligentes économes en énergie, avec des applications aux réseaux sans fil et aux systèmes intégrés de communication et de détection. Une activité intense de diffusion dans des revues scientifiques à fort impact en électronique et physique appliquée est attendue, compte tenu de la nouveauté du sujet et de l'intérêt croissant qu'il suscite dans plusieurs communautés scientifiques.

Maillage hexaédrique d’ordre élevé massivement parallèle

L’objectif du travail de thèse est de développer un algorithme de maillage hexaédrique de type Overlay-
Grid en contexte HPC, avec l’ambition d’obtenir des maillages hexaédriques d’ordre élevé et comportant
potentiellement plusieurs milliards de mailles. Nous considérons que nous devons dans ce travail satisfaire
les contraintes suivantes :/
— La solution proposée doit être efficiente en priorité dans un contexte de parallélisme hybride mêlant
mémoire distribuée (MPI) et mémoire partagée (threads). Cela nécessitera entre autres d’équilibrer
la charge de travail entre les différents processus (légers ou non) impliqués dans le calcul ;
— Les domaines géométriques à discrétiser pourront être aussi bien modélisés par des modèles de CAO,
ou des grilles de fraction de présence ;
— Le maillage obtenu comportera des mailles de différents ordres pour s’adapter au bord géométrique
du domaine spatial discrétisé.
Sous ces contraintes, la solution proposée sera analysée et comparée aux méthodes de l’état de l’art sur
différents aspects purement informatiques. La qualité des maillages obtenus sera confrontée à des besoins de
codes de simulation du CEA.

Etude des photodiodes PiN pour les imageurs infrarouges refroidis

En termes de détection IR haute performance, le LETI joue un rôle de premier plan dans le développement du matériau HgCdTe qui donne aujourd’hui des performances telles qu’il est embarqué sur le Télescope Spatial James Webb (JWST) et permet l’observation et l’étude de l’espace lointain avec une précision inégalée à ce jour. Cependant, nous pensons qu’il est encore possible de franchir un pas important en termes de performances de détection. En effet, il semble qu’une structure totalement déplétée, appelée photodiode PiN, pourrait permettre de réduire encore le courant d’obscurité (et donc réduire le bruit et gagner en sensibilité à bas flux photonique) par rapport aux structures non totalement déplétées utilisées jusqu’à présent. Cette architecture représenterait la photodiode ultime et permettrait soit un gain en performance pure à une température de fonctionnement donnée, soit une augmentation importante de la température de fonctionnement du détecteur avec le potentiel d’ouvrir de nouveaux champs d’application en simplifiant fortement la cryogénie.
Votre rôle dans ce travail de thèse sera de contribuer au développement de la photodiode ultime pour la détection IR refroidi très haute performance, caractériser et simuler les photodiodes PiN en technologie HgCdTe fabriquées sur notre plateforme photonique. Les figures de mérite principales des détecteurs seront établies et comparées à celles de la littérature (courant d’obscurité, qualité image, …). Le candidat pourra s’appuyer sur un socle de moyens de caractérisations avancées disponibles au laboratoire : mesures de FTM par EBIC (Electron-Beam-Induced-Current), de transport électronique par EH (Effet Hall), MEMSA (Maximum Entropy Mobility Spectrum Analysis) ou EBIC (extraction de la durée de vie des porteurs minoritaires) en plus des moyens plus classiques de mesures : analyseurs de paramètres à semi-conducteurs (HR-SMU pour High-Resolution Source Measurement Unit), rendement quantique, bruits temporel et spatial. Ce travail expérimental et théorique permettra de proposer une modélisation du comportement des objets fabriqués au CEA-Léti et de déterminer la sensibilité aux paramètres technologiques.
Le doctorant s’intègrera dans une équipe multidisciplinaire qui va de la croissance des matériaux II-VI jusqu’à la caractérisation EO, en passant par les procédés de fabrication de type microélectronique en salle blanche et les problématiques de packaging de tels objets fonctionnant à basse température.
Vous êtes titulaire d’un Master en optoélectronique ou physique des matériaux semi-conducteurs et êtes passionné par la recherche appliquée.
Les principales compétences techniques souhaitées sont : physique des composants à semi-conducteurs, optoélectronique, traitement des données, simulations numériques, attrait pour le travail expérimental pour mener à bien les caractérisations en environnement cryogénique et théorique pour mener à bien les simulations numériques. Rigueur

Système d’imagerie interférométrique 3D avec module de réception en optique intégrée

La capture d’images de distance, ou 3D sensing, est une fonction clé dans de nombreux domaines applicatifs émergents tels que la réalité augmentée, la robotique et la télé-médecine. Le laboratoire a développé un prototype innovant de 3D sensing en micro-optique, utilisant une technologie Lidar à modulation de fréquence avec une illumination simultanée de toute la scène. La prochaine étape consiste à miniaturiser ce dispositif en optique intégrée. Une première thèse est actuellement en cours au laboratoire, se concentrant sur l’intégration du module d’illumination.
La thèse proposée portera sur la définition d’une architecture optique intégrée pour le module de réception. L’objectif principal est de réaliser la recombinaison des faisceaux en optique intégrée, en utilisant des guides d’onde et des réseaux de couplage, pour effectuer le mélange hétérodyne de la lumière rétro-diffusée par la scène avec l’oscillateur local. Le travail consistera à concevoir ces composants d’optique intégrée en lien avec le système optique à lentilles, à simuler la propagation des faisceaux et les interférences sous Lumerical et Zemax, à participer à la réalisation en salle blanche, à effectuer la caractérisation optique des composants, et à valider expérimentalement la preuve de concept de l’imagerie de distance avec le prototype miniaturisé.
En fonction de l’avancée des travaux, la thèse pourra inclure le développement d’un module combinant les fonctions d’illumination et de réception avec un unique composant. Le travail sera valorisé par des dépôts de brevet, des publications dans des revues à comité de lecture, et des présentations en conférences internationales.

Développement de modulateurs IIIV/Si pour les applications émergentes de la photonique intégrée

Le travail de thèse proposé consiste à développer des modulateurs de phase basés sur l’intégration de capacités hybrides IIIV-Silicium dans des guides d’ondes en silicium, à la longueur d'onde de 1.55µm pour répondre aux demandes émergentes de la photonique (calcul optique sur puce, LIDAR). A la différence des applications telecom/datacom, qui ont permis l'émergence de la photonique intégrée sur silicium, ces nouveaux champ applicatifs mettent en jeux des circuits qui nécessitent un très grand nombre de modulateurs de phase. Les modulateurs tout silicium à base de jonction PN, qui présentent des pertes optiques de plusieurs dB et des tailles centimétriques, sont un verrou à l’émergence de ces applications.
Les capacités hybrides IIIV-Si doivent permettre, grâce aux propriétés électro-optiques des matériaux IIIV, de réduire d’un ordre de grandeur la taille des modulateurs silicium et d’améliorer leur efficacité énergétique (réduction des pertes optiques). Des premiers modulateurs fonctionnels ont été conçus, réalisés et testés au laboratoire. Il s’agira dans un premier temps d’étudier plus finement leurs performances (pertes, efficacité, vitesse, hystérésis) et d’en comprendre les ressorts, en utilisant les moyens de simulation optique et de caractérisation électrique disponibles (C(V), densité de charge d'interfaces, DLTS..). Il s’agira notamment de mieux comprendre l’impact du procédé de fabrication sur les propriétés électro-optiques. Dans un second temps le doctorant proposera des améliorations des architectures et des procédés de fabrication (en collaboration avec nos spécialistes), et les validera expérimentalement à partir de capacités hybrides et de modulateurs intégrant ces capacités.

Métasurfaces pour l’ amélioration de l'efficacité des µLEDs à conversion

Dans le contexte de la réalité augmentée, réaliser des matrices de µLEDs RGB est la prochaine étape afin de miniaturiser et simplifier le système optique dans sa globalité. Afin de réaliser de tels dispositifs, une des approches envisagées est de réaliser des matrices de µLEDs en GaN/InGaN bleues et d’appliquer des convertisseurs de couleur vers le rouge et le vert au dessus de cette matrice. Cependant, les applications de réalité augmentée requièrent des dispositifs émissifs directifs, ce qui est à priori difficile à réaliser car l’émission spontanée des convertisseurs est à priori isotrope. Cependant il a récemment été démontré par le laboratoire Charles Fabry (thèse de E. Bailly et direction de cette thèse) que la combinaison de métasurfaces avec des convertisseurs couleurs pouvaient permettre de réaliser de l’émission directive. Le but de cette thèse est alors d’appliquer cette approche en la combinant avec des µLEDs bleues réalisées au CEA-LETI. Durant cette thèse l’étudiant designera les dispositifs afin de les rendre efficaces et avec une émission directive. Puis dans un deuxième temps des dispositifs seront réalisés en salle blanche au LETI et caractérisés opto-électriquement.
La première partie de cette thèse (le design) sera réalisée par l’étudiant principalement dans les locaux du laboratoire Charles Fabry sur le plateau de Saclay, puis il rejoindra le CEA-LETI au sein du LITE à Grenoble pour les aspects de caractérisation et de comparaison avec les simulations.

Les travaux du Laboratoire d'Intégration des Technologies Emissives portent sur l'intégration de la fabrication d'émetteurs µLED, OLED et LCD en environnement de type fonderie microélectronique sur silicium. Il s'agit par exemple d'améliorer les performances de micro-écrans sur ASIC tout en diminuant la taille caractéristique des pixels émetteurs, ou encore de démontrer de nouveaux usages de ces sources lumineuses dans le domaine des capteurs optiques biomédicaux.

Top