Calcul fiable en mémoire et mise en œuvre de réseaux neuronaux stochastiques à très faible consommation d'énergie inspirés de la biologie

La résolution automatisée des tâches cognitives repose principalement sur des algorithmes d'apprentissage appliqués aux réseaux neuronaux qui, lorsqu'ils sont exécutés sur des architectures numériques CMOS standard, entraînent une consommation d'énergie supérieure de plusieurs ordres de grandeur à celle dont le cerveau aurait besoin. En outre, les solutions conventionnelles de réseaux neuronaux Edge ne peuvent fournir que des prédictions de sortie et ne sont pas en mesure de transmettre avec précision l'incertitude des prédictions en raison de leurs paramètres déterministes et des activations des neurones, ce qui donne lieu à des prédictions trop sûres. Pouvoir modéliser et calculer l'incertitude d'une prédiction donnée permet à l'utilisateur de prendre de meilleures décisions (par exemple, dans les processus de classification ou de prise de décision) qui peuvent donc être expliquées, ce qui est crucial dans une variété d'applications, telles que les tâches critiques pour la sécurité (par exemple, les véhicules autonomes, le diagnostic et le traitement médicaux, la robotique industrielle et les systèmes financiers). Le réseau neuronal probabiliste est une solution possible pour traiter la prédiction de l'incertitude. En outre, la consommation d'énergie peut être considérablement réduite en utilisant des systèmes informatiques matériels dont les architectures s'inspirent de modèles biologiques ou physiques. Ils sont principalement basés sur des nanodispositifs imitant les propriétés des neurones telles que l'émission de pointes stochastiques ou synchrones. De nombreuses propositions théoriques ont montré que les dispositifs spintroniques nanométriques (MTJ) sont particulièrement bien adaptés. Ils peuvent être utilisés comme composants stochastiques ou déterministes.

Le choix technologique dans l'écoconception d'architectures IA

Les systèmes électroniques ont un impact environnemental significatif en termes de consommation de ressources, d’émissions de gaz à effet de serre et de déchets électroniques, qui connaissent tous une tendance à la hausse massive. Une grande partie de l'impact est due à la production, et plus particulièrement à la fabrication de circuits intégrés, qui devient de plus en plus complexe, gourmande en énergie et en ressources avec les nouveaux nœuds technologiques. La technologie employée pour l'implémentation d'un circuit a des effets directs sur les coûts environnementaux pour la production et l'usage, la durée de vie du circuit et les possibilités de plusieurs cycles de vie dans une perspective d'économie circulaire. Le choix technologique devient donc une étape indispensable de la phase d'écoconception d'un circuit.
La thèse vise à intégrer l'exploration de différentes technologies dans un flot d'éco-conception de circuit intégré. Le travail a pour objet la définition d’une méthodologie pour une intégration systématique du choix technologique dans le flot, avec identification de la meilleure configuration de l’architecture implémentée pour une maximisation de la durée de vie et la prise en compte des stratégies d’économie circulaire. Les architectures visées par la thèse rentrent dans le domaine de l’IA embarqué, qui connait une tendance de déploiement à la hausse et comporte des défis sociétaux majeures. La thèse constituera une première étape de recherche vers une IA embarquée soutenable.

Accélération logicielle et matérielle de Neural Fields en robotique autonome

Depuis 2020, les réseaux de neurones Neural Radiance Fields, ou NeRFs, ont été l'objet d'un fort intérêt de la communauté scientifique pour ses capacités de reconstruction 3D implicite et de synthèse de nouveaux points de vues d'une scène à partir d'un nombre restreint d'images de celles-ci. Les dernières avancées scientifiques ont permis d'améliorer drastiquement les performances initiales (réduction du nombre de données nécessaires, de besoins mémoire et augmentation de la vitesse de traitement), ouvrant la voie à de nouvelles utilisations de ces réseaux, en particulier en embarqué, ou pour de nouveaux objectifs.
Cette thèse s'intéresse ainsi à l'utilisation de ces réseaux à des fins de navigation robotique autonome, avec les contraintes embarquées impliquées: consommation, ressources matérielles de calcul et de mémorisation limitées. Le contexte de navigation impliquera d'élargir des travaux entamés autour de versions incrémentales de ces réseaux de neurones.
L'étudiant aura à charge de proposer et concevoir des mécanismes algorithmiques, logiciels et matériels innovants permettant d'envisager l'exécution de NeRFs en temps réels pour la navigation robotique autonome.

Etude de matrices de sources TeraHertz cointégrées en technologie photonique Silicium et III-V

Le rayonnement TeraHertz (THz) présente un intérêt croissant pour l’imagerie et la spectroscopie dans divers domaines applicatifs tels que la sécurité, la santé, l'environnement et le contrôle industriel puisque dans cette gamme de fréquence, de nombreux matériaux diélectriques sont transparents et de nombreuses molécules présentent des signatures spectrales uniques pour leur identification. Cependant, les limitations des sources actuelles, nécessaires pour cette imagerie active, entravent son utilisation à longue distance ou à travers de matériaux épais.

Ce sujet de thèse propose de développer une source de puissance THz, largement accordable, sous la forme d'une matrice de sources photoconductrices excitées par photomélange de deux lasers infrarouges. L'objectif est d'intégrer plusieurs dizaines voire centaines de sources sur un seul composant en cointégrant des composants en matériaux III-V sur un substrat photonique sur silicium afin d’offrir une solution innovante aux problèmes de puissance et d’accordabilité.

Ce travail de thèse, partagé entre les sites de Bordeaux et Grenoble, se positionne dans des domaines à fort potentiel industriel, ceux de la photonique intégrée et des technologies d’intégration sur silicium. Il comprend plusieurs étapes, notamment l'étude de l'architecture du système photonique complet à l’aide d’outils de simulation, le choix des structures et des matériaux, le développement technologique sur les plateformes du CEA LETI et la caractérisation des performances. Une démonstration de concept avec un petit nombre de sources est prévue, suivie de la conception d'un système matriciel à grande échelle.

Le projet représente un défi technologique majeur, mais son succès ouvrirait la voie à une amélioration significative de la capacité de pénétration du rayonnement THz et contribuerait également à l’élargissement des domaines d’application du THz.

Développement de détecteurs de photons uniques supraconducteurs intégrés sur silicium pour le calcul quantique photonique

Le développement de technologies quantiques constitue un enjeu majeur pour l’avenir, en particulier pour les communications inviolables et pour les processeurs de calcul quantique offrant une puissance inégalée. Les bits quantiques photoniques (sous forme de photons uniques), du fait de leur excellente robustesse à la décohérence, sont des candidats très prometteurs pour ces applications. Nous développons au CEA-LETI une technologie de photonique quantique intégrée sur des substrats de silicium, donc industrialisable, comprenant différentes briques clés de génération, manipulation et détection de qubits photoniques.
Le sujet de thèse concerne le développement de détecteurs de photons uniques supraconducteurs intégrés, sensibles à la présence d’un seul photon, qui sont des composants indispensables pour le calcul quantique photonique. L’objectif de cette thèse sera tout d’abord de concevoir des détecteurs de photons uniques intégrés sur des guides d’onde à très faibles pertes utilisés pour le cœur du processeur de calcul quantique, de développer un procédé de fabrication en salle blanche compatible avec la plateforme photonique sur silicium existante et de caractériser leurs figures de mérite (efficacité de détection, coups d’obscurité, performances temporelles) à l’aide de laser atténués. L’objectif final de la thèse sera d’intégrer des petits circuits comprenant plusieurs détecteurs sur une même puce afin de caractériser la pureté et l’indiscernabilité entre photons uniques émis par une même source à boites quantiques développée en parallèle au CEA-IRIG, également situé sur le centre de Grenoble.
Ce travail de thèse sera effectué en collaboration entre le CEA-Leti et le CEA-IRIG et constituera une brique stratégique, nécessaire aux futures générations de calculateur quantique photonique comportant plusieurs dizaines de qubits.

Linéarisation de micro-sources optiques pour les communications

Vous avez envie de participer au futur des transmissions optiques pour les communications très haut débits ? Cette thèse y prendra pleinement sa place, sous des aspects de performance et d’efficacité énergétique, en tentant de favoriser notamment l’émergence de solutions optiques à bas coût carbone ou faible dépendance en matériaux rares.

Le domaine des communications optiques non-cohérentes sur LED connait un essor grandissant ces dernières années, notamment dû aux avantages que les microLED GaN ou organiques peuvent amener en termes de haut débit ([1-2], http://www.youtube.com/watch?v=9kfNgPBuUpk), d’efficacité énergétique et d’intégration hybride pour des applications récentes et variées comme le LiFi, les communications sur fibre (data centers, …) ou sur guide d’onde (puce à puce). Cependant, d’une part ces sources nécessitent une optimisation délicate des paramètres des formes d’ondes dû à leur comportement multifactoriel et complexe en fréquence, et d’une autre part elles imposent des non-linéarités et effets mémoires limitant les performances et pouvant s’apparenter aux phénomènes introduits par les amplificateurs de puissance dans les systèmes RF conventionnels avec néanmoins des spécificités propres.
Depuis une dizaine d’années, des études ont tenté de compenser ces non-linéarités en utilisant des modèles affichant différents compromis entre complexité et précision de modélisation, avec des validations sur des macro-LEDs commerciales. Par ailleurs, depuis peu, les microLEDs comme celles développées au CEA (http://www.leti-cea.fr/cea-tech/leti/Pages/actualites/News/debit-lifi-un-nouveau-record-telecommunication-et-objets-communicants.aspx) s’imposent dans certains domaines de recherche de par leur grande bande passante et leur forte intégration, mais avec un comportement HF spécifique et des effets mémoire accrus par une bande de modulation dépassant le gigahertz.

La thèse s’attachera à étudier dans un premier temps des solutions d’optimisation de configuration de formes d’ondes envisagées de type multiporteuses en fonction des caractéristiques spécifiques des micro-sources optiques (dépendance inverse du rendement et de la bande passante en fonction de la polarisation). Dans un second temps, des algorithmes de compensation de non-linéarités seront implémentés sur ce type de source optique pour tenter d’améliorer les débits ou distances de transmission, suivant des compromis complexité/performances. Des validations matérielles des solutions numériques développées seront réalisées sur des micro-sources implémentées dans des bancs de transmission instrumentalisés permettant in fine une démonstration temps-réel des innovations produites durant la thèse.
Vous serez intégré dans une équipe dynamique travaillant sur une multitude d’axes de recherche autour du traitement du signal, des protocoles et des plateformes d’implémentation.

Nous recherchons un candidat avec un profil en communications numériques, traitement de signal et optoélectronique, ayant une réelle motivation pour travailler sur un sujet multidisciplinaire (formes d’onde, algorithmes, modélisations, simulations et implémentation matérielle). Nous vous proposons un environnement de recherche unique dédié à des projets ambitieux au profit des grands enjeux sociétaux actuels, une expérience à la pointe de l’innovation (fort potentiel de développement industriel) et des moyens expérimentaux exceptionnels, pour déboucher sur de réelles opportunités de carrière en R&D à l’issue de votre thèse. Rejoignez-nous, venez développer vos compétences et en acquérir de nouvelles ! Pour candidater, merci d’envoyer directement votre CV à luc.maret@cea.fr.

[1] M. N. Munshi, L. Maret, B. Racine, A. P. A. Fischer, M. Chakaroun and N. Loganathan, "2.85-Gb/s Organic Light Communication With a 459-MHz Micro-OLED," in IEEE Photonics Technology Letters, vol. 35, no. 24, pp. 1399-1402, 15 Dec.15, 2023, doi: 10.1109/LPT.2023.3327612.
[2] L. Maret et al., « Ultra-High Speed Optical Wireless Communications with gallium-nitride microLED », Photonics West, SPIE OPTO, Light-Emiting Devices, Materials and Application 2021

Robustesse des métallisations épaisses réalisées sur des substrats céramiques 3D.

Une métallisation robuste et de qualité des substrats céramiques 3D est un élément clé de la réussite de ce projet et une nécessité quant à un futur développement industriel des travaux de recherche qui seront réalisés au cours de ces deux thèses.
Les travaux en cours sur la plateforme matériau du CEA de Toulouse fournissent déjà des résultats intéressant qui permettes d’envisager le premier sujet proposé ici. Toutefois, au cours de ces travaux, nous avons pu mettre en évidence qu’un travail conjoint entre les équipes matériaux et puissance permet d’améliorer la qualité des résultats en intégrant l’aspect design for reliability de la conception au matériau. C’est pourquoi, ce second sujet a pour vocation de traiter finement la réalisation des pièces céramiques 3D métallisées, afin de comprendre l’évolution des performances des pièces réalisées en fonctions des céramiques utilisées, des techniques de métallisations, de la nature des métaux, des designs, des process … utilisés.
Aussi, ce travail de thèse débutera par la réalisation de structures planes en céramique sur lesquelles seront réalisés des essais de métallisation en utilisant différentes techniques telles que le brasage des pistes, le dépôt de couches d’accroche suivi d’électroplating, …
Ces différentes techniques et interfaces seront soumises à des tests de vieillissement et de tenue mécanique. En outre, des caractérisations morphologiques seront réalisées. La qualité des interfaces pourra également être évaluée au moyen de caractérisations diélectrique (mesure de rigidité diélectriques, pertes diélectriques, I(V)).
Des éprouvettes seront également réalisées pour vérifier les caractéristiques mécanique, diélectrique et thermique de la céramique ce qui permettra d’alimenter le premier sujet de thèse en données matériaux.
En outre, pendant tout le déroulement de la thèse, des véhicules de test seront réalisés afin de définir les règles de design utilisable pour le dimensionnement du module de puissance.
Pour finir, des pièces céramiques 3D métallisées seront réalisées et caractérisés afin de permettre la réalisation du module de puissance définie dans le premier sujet de thèse.

Optimisation electro-thermique des modules de puissances Grand Gap par la fonctionnalisation de substrats céramiques 3D réalisés par impression 3D céramique (Al2O3/AlN)

Afin de tirer profit des composants grands Gap (GaN et SiC), il a été démontré la nécessiter de réduire les éléments parasites dans les cellules de commutation et donc dans les modules de puissance. La solution ‘triviale’ consiste donc à rendre les modules de puissance plus compacts pour résoudre cette problématique d’éléments parasites. Toutefois, cela se fait souvent au détriment de la thermique. Le sujet proposé ici a donc pour ambition de ne négliger aucun de ces aspects en bénéficiant des nouvelles libertés offertes par l’impression 3D céramique en terme de design et de performance.
Aussi, ce travail de thèse débutera par une étude des modules de puissance grand gap actuels, ce qui permettra au doctorant de compléter ses connaissances et de bien comprendre les limites de ces architectures : éléments parasites, parallélisassions, intégrité du signal, gestion de la thermique, décharges partielles ...
De ce premier bilan qui se veut le plus exhaustif possible, nous nous proposons de rechercher par simulation FEM 3D un ensemble de topologies réalisables par impression 3D céramique qui pourront répondre aux problématiques identifiées.
Sur la base de ces résultats, un nouveau module de puissance haute tension (800V-400A) pourra alors être conçu et réalisé.

Développement de FPGA spintronique non volatil pour applications spatiales

En microélectronique, on peut distinguer deux types de circuits intégrés. Les ASIC (Application Specific Integrated Circuit) dédié à une seule application et les FPGA (Field Programmable Gate Array) dédiés à l'électronique numérique, sur lequel nous nous concentrons pour cette thèse. Le principal avantage des FPGA est qu'ils sont reprogrammables. Ces circuits sont composés de plusieurs cellules logiques élémentaires, interconnectées entre elles via un système d'interconnexions programmable. Un FPGA est ainsi principalement composé d'éléments mémoire pour programmer les fonctionnalités du circuit, les rendant particulièrement sensibles aux rayonnements, puisqu'un défaut survenant dans la mémoire modifie le fonctionnement du FPGA de façon permanente. Les FPGA traditionnels sont basés sur des mémoires SRAM ou Flash. Le but de cette thèse est d'évaluer l'utilisation de la MRAM, avec les technologies STT (Spin Transfer Torque) et SOT (Spin Orbit Torque) qui sont aujourd'hui 2 technologies très prometteuses pour des applications de mémoires dense et/ou rapide, comme mémoire de configuration et d'interconnexion pour les FPGA et notamment comme moyen d'améliorer/simplifier la mise en œuvre des techniques de durcissement standards pour les applications spatiales tout en réduisant le coût grâce à sa densité. L'intégration de MRAM dans des FPGAs durci a été étudié sur la technologie MRAM TAS (Thermally Assisted Switching) qui aujourd'hui n'est plus du tout utilisée pour des applications de type mémoire. Le travail consistera à insérer des composants magnétiques dit jonction tunnel magnétique, à plusieurs niveau et d'en évaluer l'intérêt. Pour cela, plusieurs outils de simulation seront utilisés afin d'injecter des particules présentes dans l'espace à différents endroits du circuits et comparer les résultats avec une version classique. Ainsi, il sera possible de mesurer l'efficacité d'un tel durcissement à base de technologie magnétique.

Capteurs MEMS en régime chaotique pour amplification de la résolution

L'amélioration de la résolution des capteurs MEMS s'obtient toujours par une augmentation du cout du composant (surface) ou de son électronique (complexité et conso). Au vu des enjeux actuels de sobriété énergétique, il est essentiel d'explorer de nouvelles voies disruptives permettant de réduire les impacts liés à la haute performance des capteurs.
Le chaos est un phénomène déterministe exponentiellement sensible aux faibles variations. Peu étudié jusqu’à récemment, il peut s’implémenter de façon simple dans la dynamique des capteurs MEMS, afin d'amplifier les faibles signaux et d'augmenter la résolution. Il s’agit in fine d’une méthode de "in-sensor computing", permettant de s’affranchir d’une partie de l’électronique de mesure.
L’objectif de la thèse sera de créer le premier démonstrateur MEMS de "in-sensor computing" en régime chaotique. Pour ce faire, nous proposons d’étudier, par un travail approfondi de caractérisation/modélisation, ce nouveau régime de fonctionnement des capteurs MEMS déjà disponibles au DCOS/LICA (poutres M&NEMS et MUT). Ces premiers pas dans la compréhension du lien entre mesurande et réponse d'un MEMS en régime chaotique permettront de se projeter ensuite sur d’autres applications, notamment dans le domaine de la cryptographie.

Top