Étude et modélisation des dynamiques de domaines ferroélectriques et antiferroélectriques dans les condensateurs à base d’oxyde d’hafnium

Le contexte de la thèse s’inscrit dans l’exploration de nouvelles technologies de supercondensateurs et de dispositifs hybrides de stockage d’énergie, visant à concilier miniaturisation, forte densité de puissance et compatibilité avec les procédés microélectroniques. L’expertise du laboratoire d’accueil (LTEI/DCOS/LCRE) en intégration de couches minces et en ingénierie de matériaux diélectriques ouvre aujourd’hui des perspectives inédites pour l’étude des comportements ferroélectriques et antiferroélectriques dans les oxydes d’hafnium dopés.

La thèse portera plus particulièrement sur l’étude expérimentale et la modélisation physique de condensateurs à couches minces d’oxyde d’hafnium (HfO2), dopés de manière à présenter des propriétés ferroélectriques (FE) ou antiferroélectriques (AFE) selon la composition et les conditions de dépôt, par exemple à travers l’incorporation de ZrO2 ou de SiO2. Ces matériaux présentent un fort potentiel pour la réalisation de dispositifs combinant fonctions de mémoire non-volatile et de stockage d’énergie sur une même plateforme CMOS-compatible, ouvrant ainsi la voie à des systèmes autonomes à très faible consommation, tels que les architectures d’edge computing, les capteurs environnementaux ou les objets connectés intelligents.

Le travail de recherche consistera à fabriquer et caractériser des condensateurs métal–isolant–métal (MIM) à base d’HfO2 dopé, intégrés sur substrats silicium, puis à étudier expérimentalement les mécanismes de relaxation des domaines ferroélectriques et antiferroélectriques à partir de mesures courant–tension (I–V) et polarisation–champ électrique (P–E), réalisées sous différentes fréquences, amplitudes et conditions de cyclage. L’analyse des boucles d’hystérésis mineures permettra d’extraire la distribution des énergies d’activation et de modéliser la dynamique de relaxation des domaines ferroélectriques. Un modèle physique sera ensuite élaboré ou adapté afin de décrire les transitions FE/AFE sous excitation électrique cyclique, en tenant compte des phénomènes de piégeage de charges, des contraintes mécaniques et des effets de nucléation et de croissance des domaines.

L’ensemble de ces travaux visera à optimiser la densité d’énergie récupérable et le rendement énergétique global des dispositifs, tout en établissant des critères de conception pour des composants de stockage d’énergie compacts, efficaces et pleinement intégrables dans les technologies silicium. Les connaissances acquises contribueront à une meilleure compréhension des mécanismes dynamiques régissant le comportement FE/AFE de l’HfO2 dopé et bénéficieront potentiellement à d’autres domaines tels que les mémoires ferroélectriques, la récupération d’énergie et les architectures neuromorphiques à basse consommation.

Inférence neuronale bayésienne à partir de transistors ferroélectriques à mémoire

De nombreux systèmes critiques pour la sécurité intègrent désormais des fonctions d’intelligence artificielle devant opérer avec une consommation énergétique minimale et sous fortes incertitudes, notamment en contexte de données limitées. Or, les approches déterministes classiques de l’IA ne fournissent qu’une estimation ponctuelle des prédictions, sans quantification rigoureuse de la confiance, ce qui limite leur fiabilité en conditions réelles.

Cette thèse s’inscrit dans le domaine émergent de l’électronique bayésienne, où l’objectif est d’implémenter l’inférence probabiliste directement au niveau matériel, en exploitant la variabilité intrinsèque de nanodispositifs pour représenter et manipuler des distributions de probabilité. Si des mémristors ont déjà été utilisés pour réaliser des opérations d’inférence bayésienne, leurs contraintes en endurance et en énergie de programmation constituent un verrou majeur pour l’apprentissage embarqué.

L’objectif de cette thèse est d’explorer l’utilisation de transistors ferroélectriques à effet de champ (FeMFETs) comme briques élémentaires de réseaux de neurones bayésiens sur puce. Il s’agira de caractériser et modéliser l’aléa ferroélectrique exploitable pour l’échantillonnage et la mise à jour probabiliste, de développer des architectures de neurones et synapses bayésiens basées sur ces dispositifs, puis d’évaluer expérimentalement et au niveau système leur robustesse, leur efficacité énergétique et leur pertinence pour des applications critiques.

Croissance et caractérisation de l’AlScN : un nouveau matériau prometteur pour les dispositifs piézoélectriques et ferroélectriques

Les semi-conducteurs III-nitrures — GaN, AlN et InN — ont révolutionné le marché de l’éclairage et pénètrent rapidement le secteur de l’électronique de puissance. Actuellement, de nouveaux composés nitrures sont explorés dans la recherche de nouvelles fonctionnalités. Dans ce contexte, le nitrure d’aluminium et de scandium (AlScN) s’est imposé comme un nouveau membre particulièrement prometteur de la famille des nitrures. L’incorporation de scandium dans l’AlN conduit à :

* Des constantes piézoélectriques accrues : ce qui rend l’AlScN très attractif pour la fabrication de générateurs piézoélectriques et de filtres SAW/BAW à haute fréquence.
* Une polarisation spontanée augmentée : cette polarisation renforcée peut être exploitée dans la conception de transistors à haute mobilité électronique (HEMTs) présentant une densité de charge très élevée dans le canal.
* La ferroélectricité : la découverte récente (2019) de propriétés ferroélectriques ouvre la voie au développement de nouvelles mémoires non volatiles.

Au cours des cinq dernières années, l’AlScN est devenu un sujet majeur de recherche, présentant de nombreuses questions ouvertes et de passionnantes perspectives à explorer.

Cette thèse de doctorat portera sur l’étude de la croissance et des propriétés de l’AlScN et du GaScN synthétisés par épitaxie par jets moléculaires (MBE). Le doctorant sera formé à l’utilisation d’un système MBE pour la synthèse des semi-conducteurs III-nitrures ainsi qu’à la caractérisation structurale des matériaux par microscopie à force atomique (AFM) et diffraction des rayons X (XRD). La variation des propriétés de polarisation du matériau sera étudiée par l’analyse de la photoluminescence de structures à puits quantiques. Enfin, le doctorant sera formé à l’utilisation de logiciels de simulation pour modéliser la structure électronique des échantillons, afin de faciliter l’interprétation des résultats optiques.

Développement et caractérisation de matrices de sources TeraHertz cointégrées en technologie photonique Silicium et III-V

La gamme TéraHertz (0.1–10 THz) suscite un fort intérêt pour l’imagerie et la spectroscopie (sécurité, santé, environnement, contrôle industriel) du fait de la transparence de nombreux matériaux en THz et des signatures spectrales caractéristiques. Cependant, les sources actuelles peinent à concilier puissance et accordabilité : les diodes et lasers à cascade quantique (QCL) délivrent plusieurs mW mais sur une bande étroite, tandis que les photodiodes III–V (photomixeurs) sont accordables sur de larges bandes mais limitées à quelques µW. Ce sujet de thèse vise à surmonter ces verrous en développant une matrice intégrée de sources THz. Le principe retenu est le photomélange de deux lasers à 1.55 µm dans des photodiodes InGaAs III–V, générant un courant THz modulé en phase et injecté dans des antennes adaptées.
La thèse débutera par l’étude expérimentale d’un réseau discret de 16 antennes THz (projet STYX) CEA-CTReg/DNAQ : installation du banc d’essai, mesures de cohérence de phase, de couplage optique, de lobes de rayonnement et d’interférences constructives. Ces expérimentations fourniront un socle scientifique pour la suite, à savoir la conception d’un réseau photonique intégré sur silicium. L’étudiant simulera l’architecture photonique (coupleurs, guides, modulateurs de phase, transitions Si/III–V) synchronisant plusieurs photodiodes InGaAs. Le prototypage comprendra la fabrication des circuits photoniques silicium (CEA-LETI) et des photodiodes/antennes THz en InP (III-V Lab ou, à confirmer, Heinrich-Hertz-Institut du Fraunhofer—HHI), suivie de leur intégration hybride (collage, alignement).
Cette thèse s’appuiera également sur une collaboration étroite avec le laboratoire IMS (Talence), reconnu au niveau national et international pour son expertise en photonique intégrée et en systèmes THz, apportant ainsi une complémentarité essentielle en modélisation optique, simulation électromagnétique et caractérisation expérimentale.
L’objectif final de cette thèse consistera à réaliser un prototype à quelques émetteurs (e.g. 4–16) dont la directivité et la puissance rayonnée sont accrues par les interférences constructives. La démonstration expérimentale validera le gain en portée et pénétration du rayonnement THz grâce à la combinaison puissance/accordabilité, ouvrant la voie à des systèmes d’imagerie THz de nouvelle génération.

Commande contrôle de générateurs impulsionnels à état solide

Le CEA et le laboratoire SIAME de l'Université de Pau et Pays de l'Adour mènent des recherches exploratoires dans le domaine de la commutation à l’état solide pour les Hautes Puissances Pulsées (HPP).
Cette technologie offre des perspectives prometteuses pour le développement de nouvelles machines allégées en servitudes et systèmes ancillaires, dans des architectures électrotechniques plus compactes et plus intégrées. Cette technologie est un atout au profit des programmes de durcissement, de radiographie éclair, des grands lasers de puissance ou des applications électromagnétiques de Défense.
Le candidat travaillera à Pau et se rendra régulièrement sur le site du CEA CESTA au Barp (33114) pour des réunions d’échange et des phases expérimentales.

Top