Caractérisation des chemins de réaction conduisant à l’emballement thermique pour nouvelles technologies de batteries
Le développement de cellules tout-solide n’est plus une simple hypothèse aujourd’hui. Dans le cadre du projet Safelimove, nous avons évalué la sécurité de cellules polymères hybrides de 1 Ah et 3 Ah, ce qui a conduit à une publication. De plus, dans le projet Sublime, nous avons évalué la sécurité de cellules 1 Ah à base de sulfure (argyrodite), une publication est actuellement en cours de soumission.
Avec l’arrivée de ces nouvelles cellules, il devient encore plus crucial d’accompagner leur développement par une évaluation fine de la sécurité et l’identification des mécanismes complexes mis en jeu. Les grands instruments tels que le synchrotron et le réacteur à neutrons représentent une opportunité puissante pour atteindre cet objectif, car ils offrent les meilleures résolutions spatiale et temporelle. Par exemple, grâce à la radiographie RX rapide de l’ESRF, il est possible de visualiser l’intérieur de la cellule lors de l’emballement thermique, permettant ainsi d’identifier localement l’impact des réactions (électro)chimiques sur la microstructure des composants et de valider nos modèles d'emballement thermique. De plus, avec la diffusion de rayons X aux grands angles (WAXS), il est possible de suivre in situ l’évolution de la structure cristalline des matériaux actifs pendant une réaction très rapide d’emballement thermique. En effet, l’utilisation de rayonnement synchrotron permet de réaliser un diffractogramme toutes les 3 millisecondes. Le faisceau de neutrons de l'ILL nous permet également de suivre l’évolution de la structure du lithium métal avant, pendant et après l’emballement. Il est important de souligner que ces trois techniques mentionnées sont aujourd’hui maîtrisées par les équipes du LAPS et ont, ou vont faire, l’objet de publications.
Par ailleurs, de nouvelles techniques complémentaires pourront être explorées, pour l’étude de l’impact des contraintes thermiques/mécaniques sur les matériaux actifs à partir de la ligne de lumière BM32, ou l’évaluation des degrés d’oxydation des métaux via la spectroscopie d’absorption des RX (XAS) sur ID26.
Des caractérisations en laboratoire plus classiques seront également effectuées, telles que la DSC, l’ATG-MS et la DRX.
Dans le cadre de nos différentes collaborations, pour le système tout-solide, le matériau actif de l’électrode positive sera très probablement du NMC, voire du LMFP en cas de difficultés d’approvisionnement. L’électrolyte utilisé sera à base de sulfure, voire d’halogénure, tandis que l’anode sera composée de lithium métal voire d’un alliage de lithium. Si le temps le permet, un système post Na-ion sera envisagée à partir de la 2ème année. La thèse visera, entre autres, à identifier, en fonction des matériaux utilisés, s’il y a des réactions avant la déstabilisation de la cathode, si l’électrolyte solide réagit avec l’oxygène de la cathode ou avec le matériau anodique, et si ces réactions parallèles contribuent à une meilleure ou une moins bonne sécurité de la cellule.
Les trois années de la thèse se dérouleront de la manière suivante : la première année sera consacrée à la recherche bibliographique et à la caractérisation de la technologie sulfure. Suite au premier CSI et à l'identification de l'ampleur des travaux en cours sur le sulfure, la seconde année s’appliquera à la technologie sodium-ion ou sur l'approfondissement de la technologie sulfure. Finalement, la troisième année, en plus de la rédaction de la thèse, se focalisera plus précisément sur l’impact des matériaux ainsi identifiés sur la sécurité.
Couplage entre transfert de masse et hydrodynamique diphasique : investigation expérimentale et validation/calibration de modèles
Dans le contexte de la transition énergétique et de la place cruciale du nucléaire dans un mix énergétique décarboné, comprendre, puis atténuer les conséquences de tout accident conduisant à fusion, même partielle, du cœur d’un réacteur représente une direction de recherche impérative.
Lors d'un accident avec fusion du cœur, un bain de matière en fusion, appelée corium, peut se former en fond de cuve. La composition du bain peut évoluer au cours du temps. Le bain de corium n'est pas homogène et peut se stratifier en plusieurs phases immiscibles. Avec l'évolution de la composition globale du corium, les propriétés des différentes phases évoluent. Ainsi l'ordre de stratification vertical des phases peut changer, ce qui induit un réarrangement vertical des phases. Lors de ce réarrangement une phase traverse l'autre sous forme de gouttes. L'ordre des phases ainsi que leurs mouvements sont de première importance car ils influencent grandement les flux thermiques transmis à la cuve. Mieux comprendre ces phénomènes permets d'améliorer la sûreté et le design autant des réacteurs actuels que futures.
Des premières modélisations ont déjà été réalisées, mais elles manquent de validation et de calibration. Les expériences prototypiques sont difficiles à mettre en place et à court terme aucune n'est prévue. Le présent sujet de thèse propose de combler ce manque en réalisant une étude expérimentale du phénomène à l'aide d'un système simulant à base d'eau permettant une instrumentation locale et de grandes campagnes d'essai. Le but est de valider, calibrer les modèles existants, voire en développer de nouveaux, avec en ligne de mire la possibilité de capitaliser ces résultats dans la plateforme logiciel PROCOR, qui est utilisée pour réaliser des estimations de probabilité de percement de la cuve d'un réacteur. Le dispositif expérimental serait construit et opéré au laboratoire LEMTA de l'université de Lorraine où le doctorant serait détaché. En termes d'expériences, deux cas seront à étudier, le cas goutte seule, et le cas stratifié avec formation de goutte via instabilités de Rayleigh-Taylor.
La thèse sera principalement expérimentale avec un volet utilisation de code pour le calage, la validation et pourra inclure un volet modélisation. Elle se déroulera dans son intégralité au laboratoire LEMTA à Nancy. Le doctorant profitera ainsi des compétences du LEMTA en ce qui concerne le développement de dispositifs expérimentaux simulants, les transferts dans les fluides et la métrologie. Il sera intégré à un environnement dynamique composé de chercheurs et d'autres doctorants. Le candidat devra avoir des connaissances en phénomènes de transferts (de masses notamment), ainsi qu'une appétence certaine pour les sciences expérimentales.
Comprendre les signaux émis par les liquides en mouvement
L'élasticité est l'une des plus anciennes propriétés physiques de la matière condensée. Elle s'exprime par une constante de proportionnalité G entre la contrainte appliquée (s) et la déformation (?) : s = G.? (loi de Hooke). L'absence de résistance à la déformation de cisaillement (G' = 0) indique un comportement de type liquide (modèle de Maxwell). Longtemps considérée comme spécifique aux solides, l'élasticité de cisaillement a récemment été identifiée dans les liquides à l'échelle submillimétrique notamment mis en évidence par un groupe au Laboratoire Léon Brillouin [1].
L'identification de l'élasticité de cisaillement des liquides (G' non nul) est une promesse de découverte de nouvelles propriétés liquides. Nous avons ainsi montré qu'un liquide confiné change de température sous l'effet d'un écoulement. Pourtant, aucun modèle classique (Poiseuille, Navier-Stokes, Maxwell) ne prédit cet effet, car sans corrélation à longue portée entre les molécules (c'est-à-dire sans élasticité), l'écoulement est dissipatif, donc athermique. Pour qu'un changement de température soit induit par l'écoulement (sans source de chaleur), le liquide doit présenter une élasticité et cette élasticité doit être sollicitée mécaniquement [1,2]. La thèse de doctorat explorera la conversion de l'énergie mécanique de l'écoulement en températures hors-équilibre (Non-Fourier) [2]. Nous exploiterons notamment cette capacité de conversion pour développer une nouvelle génération de systèmes microfluidiques (brevet FR2206312).
Nous explorerons également l'impact du mouillage sur l'écoulement et, réciproquement, nous examinerons comment l'écoulement liquide modifie la dynamique solide (THz) du substrat [3]. Des méthodes performantes, disponibles uniquement dans les Très Grandes Installations de Recherche (TGIR) comme l'ILL, seront utilisées pour sonder la dynamique hors-équilibre des phonons. Enfin, nous renforcerons nos collaborations existantes avec des théoriciens.
Le sujet de thèse porte sur le mouillage, les effets thermiques macroscopiques, la dynamique des phonons et le transport liquide.
Références:
1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi: 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202.
Analyse multi-modale par résonance magnétique nucléaire in situ des phénomènes électrochimiques dans des prototypes de batteries commerciales
Le développement des technologies de stockage d'énergie électrochimique est impossible sans une compréhension à l'échelle moléculaire des processus tels qu'ils se produisent dans les dispositifs commerciaux pratiques. Certains aspects de la conception des batteries, tels que la composition chimique et l'épaisseur des électrodes, ainsi que la configuration des collecteurs et des languettes de courant, influencent les distributions de densité de courant électronique et ionique et déterminent les limites cinétiques du transport ionique à l'état solide. Ces effets, à leur tour, modulent les performances et la longévité globales des batteries. Pour ces raisons, les résultats des tests de piles boutons conventionnelles ne convergent souvent pas vers des cellules commerciales hautes performances. Les préoccupations de sécurité liées à la forte densité énergétique et aux composants inflammables des batteries constituent un autre sujet crucial pour la conversion des énergies fossiles aux énergies vertes.
La spectroscopie et l'imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l'environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d'IRM à balayage de surface prêtes à l'emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d'un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l'énergie.
Ce projet vise à développer un cadre analytique avancé pour l'analyse in situ de phénomènes fondamentaux tels que le transport d'ions à l'état solide, l'intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l'analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.