Mesure de débit dans une canalisation par détection des bruits thermiques
La mesure du débit est un élément clé pour la gestion des procédés, notamment dans les secteurs nucléaire et industriel. Toutefois, les méthodes actuelles de mesure nécessitent des installations complexes, particulièrement en cas de réglementations strictes, comme dans le nucléaire. Pour pallier ces contraintes, le CEA a développé une méthode innovante de mesure de débit dans des écoulements non isothermes reposant sur l’analyse les fluctuations thermiques. Cette technique, employant deux capteurs de température installés en amont et aval de la canalisation, est d’une mise en œuvre simple et peu contraignante. Les variations de température sont transportées par l’écoulement d’un capteur à l’autre et en comparant les signaux enregistrés par ceux-ci ;, il est possible de calculer le temps de transit thermique entre eux, ce qui permet de déterminer la vitesse de l’écoulement, et par conséquent, le débit. L’objectif de cette thèse est d’optimiser cette méthode en renforçant sa fiabilité. Pour ce faire, il s’agira d’étudier la propagation du bruit thermique au sein de l’écoulement et d’optimiser à la fois le type et la position des capteurs. Ces travaux seront menés au sein du Laboratoire de Thermohydraulique du Cœur et des Circuits et en collaboration avec le Laboratoire d’Instrumentation, Système et Méthode détenant des d’équipements expérimentaux de référence. Des simulations numériques viendront compléter les expérimentations pour valider les résultats obtenus. En parallèle, des approches basées sur l’intelligence artificielle seront explorées pour améliorer le traitement des signaux thermiques. Au terme de la thèse, le doctorant aura acquis de larges compétences dans le domaine expérimental et numérique et pourra faire valoir celles-ci.
Etude expérimentale de la convection naturelle diphasique et des régimes de vaporisation en piscine de refroidissement d'une installation nucléaire
L’énergie nucléaire, faiblement émettrice en CO2, est l’un des acteurs majeurs de la transition énergétique française. Dans ce contexte, la maîtrise du refroidissement des éléments combustibles irradiés est un sujet de première importance. Ce sujet de thèse porte sur les écoulements de convection naturelle diphasique et les phénomènes de vaporisation pouvant se développer dans les bassins de refroidissement d’installations nucléaires, en particulier ceux présentant une variation verticale significative de la température de saturation du réfrigérant du fait de leur grande profondeur. Ces bassins sont utilisés pour dissiper la chaleur résiduelle des combustibles dans divers types de réacteurs nucléaires du parc actuel ou en projet. En situation accidentelle avec un fort dégagement de chaleur par les combustibles, l’eau de ces bassins peut se vaporiser, limitant à terme leur capacité de refroidissement. Parmi les mécanismes de changement de phase possibles dans des bassins de grande profondeur figure l'auto-vaporisation gravitaire, un phénomène que l’on retrouve dans divers systèmes naturels ou industriels assimilables à des canaux verticaux chauffés par le bas. Pour autant, le phénomène a été peu étudié dans la configuration spécifique d’un bassin et n’a été mis en évidence dans cette dernière que très récemment. Ainsi, l'objectif de cette thèse est de mieux comprendre le phénomène, ainsi que la turbulence induite au sein du réfrigérant par les bulles qu’il génère, afin d'améliorer les modèles thermohydrauliques à l’état de l’art permettant de simuler de tels bassins. Les travaux envisagés, de nature expérimentale, se dérouleront en collaboration avec l'Université catholique de Louvain (UCLouvain, Belgique) et le laboratoire LEGI du CNRS Grenoble, avec une grande partie de la recherche menée à l’UCLouvain. Le candidat sera rattaché au Laboratoire de Thermohydraulique du Cœur et des Circuits (LTHC) du CEA IRESNE, spécialisé dans l’étude des écoulements diphasiques en installation nucléaire. Au cours de la thèse, des données expérimentales finement résolues en temps et en espace seront acquises et interprétées, concourant à une meilleure compréhension du phénomène. Pour ce faire, des techniques avancées de stéréo-vélocimétrie par images de particules (PIV 3D) en milieu diphasique, de thermométrie et d’ombroscopie seront mises en œuvre. Lors de ce projet de thèse, le doctorant pourra développer ses compétences dans le domaine de la thermohydraulique expérimentale par la définition, la réalisation, l’interprétation d’essais et l’utilisation de moyens de mesure d’écoulements diphasiques avancés.
Matériaux eco-conçus pour l’encapsulation des modules photovoltaïques flexibles de nouvelles générations
La durée de vie des dispositifs couches minces tel les dispositifs photovoltaïques Organiques (OPV) ou des modules Silicium (Si) photovoltaïques léger et/ou flexible de nouvelle génération est un point critique pour leur commercialisation. Il est notamment crucial de les encapsuler avec des matériaux hautement barrières aux gaz afin d’éviter leur dégradation selon différents mécanismes liés à l’insertion d’eau/oxygène qui peuvent être couplés à l’illumination. Cet objectif est d’autant plus complexe lorsque le dispositif, ainsi que son encapsulation, doivent être flexibles. Par ailleurs, l’éco-conception de cette nouvelle génération de modules flexibles amène aussi bien la question de la nature des matériaux d’encapsulation employés que celle de la fin de vie des matières constituant les modules. Par exemple, l’usage actuel de polymères fluorés pour l’encapsulation génère des produits toxiques en fin de vie et pourrait être substitué par l’usage de matériaux éco-conçus, potentiellement bio-sourcés, si les performance sont adaptées à la technologie photovoltaïque employée et à l’usage.
L’objectif de cette thèse sera tout d’abord d’étudier les propriétés physico-chimiques (barrières aux gaz, mécaniques, thermiques..) d’encapsulants bio-sourcés développés dans le cadre d’un projet national PEPR BioflexPV. Ces études concerneront aussi bien les matériaux de scellage que les capots flexibles. Par ailleurs, ces matériaux seront employés pour l’encapsulation de dispositifs réels OPV et Si flexibles afin d’en étudier la dégradation selon différentes conditions d’illumination, de température et d’hygrométrie. Ces études permettront de définir les mécanismes de dégradation mis en jeux selon la technologie photovoltaïque employée (OPV ou Si) et ainsi de définir les propriétés souhaitées pour les encapsulants bio-sourcés.
Modélisation simplifiée de la calcination en tube tournant
Dans le cadre du retraitement des combustibles usés de type uranium oxyde, les déchets liquides ultimes de haute activité sont conditionnées dans des verres par un procédé en deux étapes, calcination puis vitrification. La calcination transforme progressivement le déchet liquide en un résidu sec, qui est mélangé à un verre préformé dans un four de fusion. Le calcinateur est constitué d’un tube tournant chauffé par un four à résistances. Les solutions calcinées sont constituées d’acide nitrique et de composés sous leur forme nitrate ou d’insolubles sous forme d’alliages métalliques. Dans l’objectif d’améliorer la maîtrise du pilotage du calcinateur, il est proposé de le modéliser.
La modélisation va consister à créer puis coupler trois modèles :
• Un modèle thermodynamique permettant de représenter les transformations subies par la matière. Cette partie fera très certainement appel à des mesures ATD et ATG, couplées très certainement à une démarche de type plan d’expériences (1ère année).
• Un modèle d’écoulement de la matière. Il existe déjà dans la littérature des principes de représentation très simplifié d’écoulement dans un calcinateur en tube tournant, mais il faudra faire preuve d’innovation notamment en définissant des tests pour caractériser l’écoulement de la matière au cours du processus de calcination (2ème année).
• Un modèle thermique qui prendra en compte les échanges entre le four et le tube du calcinateur mais également les échanges entre la matière et le tube. Des caractérisations de coefficients d’échanges devront être réalisées(1ère année).
Le couplage de ces trois modèles (3ème année) donnera naissance à une première modélisation simplifiée de la calcination. Ce modèle sera utilisé pour aider au pilotage de l’étape de calcination mais également pour former les opérateurs au pilotage de cet appareil.
Vous évoluerez au sein du LDPV, une équipe pluridisciplinaire (procédé, chimie, mécanique des fluides, modélisation, mécanique, induction) composée de 16 ingénieurs et techniciens. Equipe de 30 ans d’expérience en procédé de vitrification reconnue au niveau national et international
Apport de l’IA sur les calculs neutroniques déterministes de réacteurs SMR-REP pilotés en eau claire
Face aux enjeux climatiques, la recherche d'énergies propres et fiables se concentre sur le développement de petits réacteurs modulaires à eau sous pression (SMR de type REP), d’une puissance de 50 à 1000 MWth, qui visent à décarboner la production d'électricité et de chaleur dans la prochaine décennie. En comparaison des réacteurs en exploitation, leur taille réduite peut permettre de simplifier leur conception en n'utilisant pas de bore soluble dans l’eau du circuit primaire. Le pilotage repose alors principalement sur le niveau d’insertion des barres absorbantes, qui perturbent la distribution spatiale de puissance lorsqu’elles sont fortement insérées, ce qui provoque des pics de puissance plus prononcés que dans un cœur géré au bore soluble, et complique la gestion de la réactivité. Estimer correctement ces paramètres pose alors des défis en matière de modélisation neutronique, en particulier les effets de l’historique d’insertion des absorbants sur l’évolution isotopique du combustible. Une thèse achevée en 2022 a exploré ces effets à l’aide d’un modèle neutronique analytique, mais des difficultés subsistent car les mouvements d’absorbants neutroniques ne sont pas les seuls phénomènes à influer sur le spectre neutronique. La thèse proposée cherche à développer une méthode alternative qui permette de gagner en robustesse, tout en cherchant à réduire encore les biais de calculs. Une analyse de sensibilité sera réalisée pour identifier les paramètres clés, permettant de créer un méta-modèle utilisant l'intelligence artificielle pour corriger les biais des modèles existants. Ce projet, en collaboration avec l'IRSN et le CEA, permettra d'acquérir une expertise en physique des réacteurs, en simulations numériques et en machine learning.
Le travail de thèse sera effectué 18 mois au CEA de Cadarache et 18 mois à l’IRSN de Fontenay-aux-Roses.
Etude des transitions de régime d’écoulement en post-assèchement
Les écoulements diphasiques interviennent dans de nombreux systèmes fluides, notamment pour le refroidissement des réacteurs nucléaires. Selon le flux thermique échangé dans le cœur du réacteur, le débit, la sous-saturation ou la pression, on peut constater des écoulements purement monophasiques, des écoulements à bulles ou annulaires (avec un film liquide au contact de la paroi et un cœur de vapeur).
Lors d’un accident de perte de réfrigérant primaire, le cœur du réacteur qui contient les crayons combustibles s’échauffe jusqu’à la crise d’ébullition lorsque le flux thermique est suffisamment important. Une illustration des régimes d’écoulements diphasiques lors de cet accident est présenté en figure 1. Un film de vapeur se forme rapidement et isole thermiquement les crayons, tandis que du liquide subsiste dans le cœur de l’écoulement. Les crayons du cœur sont asséchés, leur surface n’est refroidie que par de la vapeur et l’échange thermique à la paroi est ainsi dégradé [1]. Cet écoulement est du type "inverted annular film boiling". Au fur et à mesure que le liquide se vaporise, le film de vapeur s’épaissit et la turbulence induite aura tendance former des vagues a l’interface liquide-vapeur et à déstabiliser l’interface jusqu’à la formation de poches de liquides (inverted slug film boiling). Puis, l’évaporation et la fragmentation de ces poches vont mener à la formation d’un écoulement dispersé à gouttes (dispersed film boiling).
Actuellement, les transitions de régime d’écoulement dans cette configuration sont très mal identifiées [1], [2] bien que la connaissance de celles-ci soit importante pour l’étude de refroidissement du cœur du réacteur nucléaire. Une des principales difficultés expérimentales réside dans la nécessité de chauffer fortement les parois pour établir un film de vapeur et maintenir celui-ci, rendant de ce fait les sections d’essai opaques. Il est donc particulièrement complexe d’accéder à une visualisation directe et plus encore à des mesures de paramètres locaux comme les champs de températures et vitesses fluides. Les résultats expérimentaux disponibles dans la littérature sur ce sujet sont donc très limités et insuffisants pour développer un modèle physique [1], [3], [4], [5].
Cette thèse, qui constitue une première étape vers l’identification précise des transitions de régime, porte sur l’étude de l’effet purement hydrodynamique, en couplant des approches expérimentale et analytique. Afin d’obtenir une compréhension de la physique des différents phénomènes, la configuration d’un écoulement de liquide au cœur d’un écoulement gazeux est proposée. Dans celle-ci, la déformation de l’interface, la vitesse du gaz et la vitesse du liquide peuvent jouer sur la transition d’un régime à l’autre [6], [7] : l’interface lisse devient perturbée par des vagues (instabilités de Kelvin-Helmholtz), des gouttes sont arrachées de l’interface. Une analyse paramétrique sera effectuée en faisant varier les débits liquides et gazeux et ainsi l’épaisseur du film gazeux pour observer ces différents phénomènes et comprendre les effets de chaque paramètre sur les transitions de régimes. Expérimentalement, un banc a récemment été conçu au DM2S/STMF/LE2H afin d’étudier plus particulièrement ces transitions grâce à une visualisation des déformations de l’interface. Des adaptations pourront être apportées avec de nouvelles mesures ou éventuellement une nouvelle méthodologie si nécessaire.
A partir des résultats expérimentaux, il sera nécessaire d’identifier, voire de définir, les nombres adimensionnels pertinents pour décrire les phénomènes observés. L’analyse portera ensuite sur la caractérisation des transitions de régimes sur la base de ces nombres adimensionnels, afin de proposer une carte des transitions de régimes d’écoulements.
La combinaison des résultats obtenus permettra de renforcer les modèles utilisés dans les codes de calcul comme le code de thermohydraulique CATHARE, développé au CEA en particulier pour les études de sureté des réacteurs nucléaires. Cette thèse présente donc un fort intérêt académique par l’exploitation d’une installation expérimentale innovante et la production de résultats nouveaux qui confirmeront également son intérêt sur le plan industriel pour l’amélioration de la connaissance des phénomènes importants dans la démonstration de sûreté des réacteurs nucléaires.
Références :
[1] M. Ishii et G. De Jarlais, « Flow visualization study of inverted annular flow of post-dryout heat transfer region », Nuclear Engineering and Design, 1987.
[2] G. De jarlais, M. Ishii, et J. Linehan, « Hydrodynamic stability of inverted annular flow in an adiabatic simulation », Argonne National Laboratory, CONF-830702-9, 1983.
[3] T. G. Theofanous, « The boiling crisis in nuclear reactor safety and performance », International Journal of Multiphase Flow, vol. 6, no 1, p. 69-95, févr. 1980, doi: 10.1016/0301-9322(80)90040-3.
[4] N. Takenaka, T. Fujii, et others, « Flow pattern transition and heat transfer of inverted annular flow », Int. J. Multiphase Flow, 1989.
[5] M. A. El Nakla, D. C. Groeneveld, et S. C. Cheng, « Experimental study of inverted annular film boiling in a vertical tube cooled by R-134a », International Journal of Multiphase Flow, vol. 37, p. 37-75, 2011.
[6] Q. Liu, J. Kelly, et X. Sun, « Study on interfacial friction in the inverted annular film boiling regime », Nuclear Engineering and Design, vol. 375, 2021.
[7] K. K. Fung, « Subcooled and low quality film boiling of water in vertical flow at atmospheric pressure », PhD Thesis, Argonne National Laboratory, 1981.
Modélisation de la chute de gouttes dans un volume libre, en support au code système CATHARE
Cette thèse porte sur l'étude de la chute de gouttes dans des volumes libres, dans le cadre de l'amélioration continue des modèles physiques du code CATHARE, utilisé pour les études de sûreté des Réacteurs à Eau Pressurisée. Les modèles actuels reposent sur les travaux d'Ishii et Zuber, qui modélisent la vitesse de chute des gouttes dans un fluide diphasique. L'objectif de la thèse est de raffiner la précision de ce modèle en y intégrant des paramètres supplémentaires et en le validant grâce à des expériences telles que celles de Dampierre et CARAYDAS. Le doctorant devra concevoir un modèle mécaniste plus représentatif, fondé sur des données expérimentales ou des simulations CFD si nécessaire. L'innovation réside dans le développement d'une modélisation plus fidèle des processus de chute de gouttes, ouvrant la voie à des applications spécifiques, telles que la modélisation des sprays, et contribuant ainsi à la validation du code CATHARE dans des domaines supplémentaire.
Etude de la dynamique des réacteurs rapides à sels fondus en convection naturelle
Les réacteurs à sels fondus (RSF) sont présentés comme des systèmes intrinsèquement stables vis-à-vis des perturbations de réactivité du fait du couplage entre température du sel et puissance nucléaire conduisant à un comportement homéostatique du réacteur. Néanmoins, bien que les RSF présentent des caractéristiques intéressantes pour la sûreté, le faible retour d’expérience limite nos connaissances sur leur comportement dynamique, qui restent encore parcellaires. Ce sujet de thèse propose de contribuer au développement d’une méthodologie d’analyse de la dynamique des RSF visant à caractériser les phénomènes complexes de couplage neutronique–thermohydraulique intervenant lors d’un fonctionnement en régime de convection naturelle, ainsi qu’à identifier des séquences de transitoires potentiellement instables, à hiérarchiser les phénomènes physiques source de ces instabilités et à proposer des modèles physiques de ces phénomènes.
Ces travaux contribueront à la définition d’une méthodologie orientée sûreté en soutien aux travaux de conception des RSF à partir de l’étude du comportement dynamique du réacteur en transitoire à travers l’analyse dimensionnelle et l’étude de la stabilité de l’écoulement. Cette méthodologie vise à définir des critères simples et robustes pour garantir la sûreté intrinsèque d’un RSF à spectre rapide, en fonction de ses paramètres de conception et d’opération permettant de respecter les limites du domaine de fonctionnement.
Ce travail de thèse se situe à la croisée de l’analyse théorique des phénomènes physiques régissant le comportement du réacteur, en particulier autour de l’étude des régimes instables (de nature oscillatoire ou divergente) dus au couplage neutronique-thermohydraulique en convection naturelle, et de la mise en place d’outils analytiques et numériques pour la réalisation des calculs visant à caractériser ces phénomènes.
Le doctorant sera positionné au sein d’une unité de recherche sur les systèmes nucléaires innovants. Il développera des compétences en modélisation des RSF et en analyse de sûreté. Il pourra valoriser ses travaux auprès de la communauté internationale de recherche sur les RSF.
Analyse expérimentale et numérique des interactions fluide-structure dans la propagation des ondes de raréfaction à travers des structures complexes des réacteurs à eau pressurisée
L'accident de perte de réfrigérant primaire (APRP) dans les réacteurs à eau pressurisée (REP) entraîne des phénomènes transitoires rapides, tels que la propagation d'ondes de raréfaction dans les structures internes du réacteur. Ces ondes provoquent des charges de pression transitoires entre différentes zones, comme le cœur du réacteur et la zone de by-pass, ce qui exerce des contraintes sur le cloisonnement. La déformation de cette structure critique peut compromettre l'intégrité structurelle du réacteur et compliquer la manipulation des assemblages de combustible, notamment leur retrait après l'accident.
Le principal objectif scientifique est de développer, implémenter et valider de nouveaux modèles numériques permettant de simuler de manière plus précise la propagation des ondes de raréfaction à travers des obstacles complexes. L’état de l’art actuel repose sur des modèles simplifiés, validés uniquement pour des configurations simples comme les plaques à simple orifice (diaphragmes). Cependant, il existe un besoin d’élargir ces modèles à des géométries plus complexes, telles que les plaques à trous multiples, en utilisant différents méthodes numériques.
L’élaboration d’un modèle de porosité pour représenter les assemblages combustibles est également cruciale. Les résultats attendus seront validés expérimentalement et ont des applications directes pour les partenaires industriels EDF et Framatome, renforçant l'intérêt industriel de cette recherche.
La thèse adoptera une approche combinée, à la fois expérimentale et numérique. L’utilisation de la plateforme MADMAX permettra de tester différents obstacles complexes et de recueillir des données expérimentales détaillées grâce à des capteurs spécialisés. Ces données serviront à valider les modèles numériques développés dans le logiciel EUROPLEXUS. De plus, les simulations incluront des approches novatrices telles que un nouveau modèle de porosité pour les structures internes des réacteurs. La participation à des conférences internationales et la publication des résultats sont prévues pour assurer la diffusion scientifique des avancées.
La thèse se déroulera au laboratoire DYN du CEA Paris-Saclay, qui dispose d’équipements expérimentaux uniques, comme la plateforme MADMAX, et d’une forte expertise en modélisation numérique. Plusieurs collaborations industrielles (EDF, Framatome) et académiques offriront un environnement riche pour le doctorant, avec des échanges réguliers au sein de réseaux internationaux.
Le candidat idéal devra avoir de solides compétences en mécanique des fluides, dynamique des structures, modélisation numérique (éléments finis, volumes finis), et en programmation. Une première expérience avec des outils comme EUROPLEXUS sera un plus. Un stage de M2 pourra être proposé pour familiariser le candidat avec les méthodes et outils utilisés dans cette thèse.
Cette thèse permettra au doctorant d’acquérir des compétences hautement spécialisées en interactions fluide-structure, modélisation numérique et expérimentation dans un contexte industriel. Ces compétences sont très recherchées dans les secteurs de l’énergie, de l’aéronautique et des technologies de simulation avancée, ouvrant la voie à des carrières dans la recherche appliquée ou l’ingénierie dans l’industrie.
Couplage entre transfert de masse et hydrodynamique diphasique : investigation expérimentale et validation/calibration de modèles
Dans le contexte de la transition énergétique et de la place cruciale du nucléaire dans un mix énergétique décarboné, comprendre, puis atténuer les conséquences de tout accident conduisant à fusion, même partielle, du cœur d’un réacteur représente une direction de recherche impérative.
Lors d'un accident avec fusion du cœur, un bain de matière en fusion, appelée corium, peut se former en fond de cuve. La composition du bain peut évoluer au cours du temps. Le bain de corium n'est pas homogène et peut se stratifier en plusieurs phases immiscibles. Avec l'évolution de la composition globale du corium, les propriétés des différentes phases évoluent. Ainsi l'ordre de stratification vertical des phases peut changer, ce qui induit un réarrangement vertical des phases. Lors de ce réarrangement une phase traverse l'autre sous forme de gouttes. L'ordre des phases ainsi que leurs mouvements sont de première importance car ils influencent grandement les flux thermiques transmis à la cuve. Mieux comprendre ces phénomènes permets d'améliorer la sûreté et le design autant des réacteurs actuels que futures.
Des premières modélisations ont déjà été réalisées, mais elles manquent de validation et de calibration. Les expériences prototypiques sont difficiles à mettre en place et à court terme aucune n'est prévue. Le présent sujet de thèse propose de combler ce manque en réalisant une étude expérimentale du phénomène à l'aide d'un système simulant à base d'eau permettant une instrumentation locale et de grandes campagnes d'essai. Le but est de valider, calibrer les modèles existants, voire en développer de nouveaux, avec en ligne de mire la possibilité de capitaliser ces résultats dans la plateforme logiciel PROCOR, qui est utilisée pour réaliser des estimations de probabilité de percement de la cuve d'un réacteur. Le dispositif expérimental serait construit et opéré au laboratoire LEMTA de l'université de Lorraine où le doctorant serait détaché. En termes d'expériences, deux cas seront à étudier, le cas goutte seule, et le cas stratifié avec formation de goutte via instabilités de Rayleigh-Taylor.
La thèse sera principalement expérimentale avec un volet utilisation de code pour le calage, la validation et pourra inclure un volet modélisation. Elle se déroulera dans son intégralité au laboratoire LEMTA à Nancy. Le doctorant profitera ainsi des compétences du LEMTA en ce qui concerne le développement de dispositifs expérimentaux simulants, les transferts dans les fluides et la métrologie. Il sera intégré à un environnement dynamique composé de chercheurs et d'autres doctorants. Le candidat devra avoir des connaissances en phénomènes de transferts (de masses notamment), ainsi qu'une appétence certaine pour les sciences expérimentales.