DÉFENSOMES, CONTRE-DÉFENSOMES ET REMODELAGE DES COMMUNAUTÉS MICROBIENNES

Le transfert horizontal de gènes (HGT) permet aux bactéries de s'adapter rapidement à de nouveaux niches écologiques et défis. Ce processus est principalement facilité par les éléments génétiques mobiles (MGE), tels que les bactériophages (phages), les plasmides et les éléments transposables, qui sont présents dans la plupart des génomes, souvent en multiples copies. Le potentiel de conflits découlant des interactions entre les MGE et les bactéries a conduit à l'évolution de mécanismes de défense sophistiqués visant à filtrer, apprivoiser ou inactiver ces éléments. Parmi les exemples bien étudiés d'immunité anti-MGE figurent les systèmes de restriction-modification (R-M), l'infection abortive et les systèmes CRISPR-Cas. Ensemble, ces systèmes ont révolutionné le domaine de l'ingénierie génomique en tant qu'outils de clivage, de stabilisation et d'édition précis, et ont poussé la quête de nouveaux mécanismes de défense ainsi que de stratégies de contre-défense contre les MGE, capables de limiter leur action.
La dernière décennie a vu l'identification et, dans certains cas, la caractérisation mécanistique d'un arsenal étendu de systèmes de défense anti-MGE jusqu'alors inconnus. Ces systèmes peuvent être déployés à différentes étapes du processus d'infection par les MGE, soit en dégradant les acides nucléiques envahissants, en inhibant leur réplication, ou en induisant la dormance ou la mort des cellules infectées pour stopper la propagation de l'élément mobile à travers la population microbienne. Avec le nombre croissant de familles de défensomes identifiées, une découverte parallèle a été celle des systèmes de contre-défense codés par les MGE. Ces contre-défensomes déploient de multiples mécanismes pour inactiver les systèmes immunitaires de l'hôte (au-delà des mutations génétiques des bactériophages), incluant la liaison directe aux protéines immunitaires, la modification post-traductionnelle des protéines immunitaires, la ciblage des messagers secondaires et la contreaction des systèmes de défense épuisant des métabolites.
Beaucoup des systèmes de défense et de contre-défense connus à ce jour ont été découverts grâce à l'exploration bioinformatique des bases de données génomiques de référence (par exemple, NCBI RefSeq). Cependant, celles-ci surreprésentent des organismes qui peuvent être cultivés en laboratoire, offrant ainsi une vue limitée de la fraction inconnue de la diversité microbienne environnementale qui reste non cultivée. Afin de caractériser cette diversité cachée, nous avons récemment effectué un criblage à grande échelle de génomes de populations bactériennes de haute qualité, reconstruits à partir de métagénomes environnementaux, mettant en évidence la diversité des défensomes et le potentiel de coopération fonctionnelle ainsi que la génération de nouvelles fonctions entre différents modules défensifs [1]. Les résultats de cette étude ont soulevé des questions supplémentaires relatives à la nature des conflits et alliances entre les familles de systèmes de défense, l'étendue des stratégies de contre-défense dans le phagome environnemental, ainsi que la perspective de prioriser les gènes de défense 'core' pour le développement d'antimicrobiens capables de cibler une espèce bactérienne entière. Nous proposons d'aborder ces questions dans la proposition actuelle comme suit:

1) Premièrement, l'analyse de la co-occurrence / co-localisation des systèmes de défense et de l'immunité synergique à travers les espèces bactériennes et les biomes ;
2) Deuxièmement, une cartographie à grande échelle du contre-défensome des phagomes à travers plusieurs environnements ;
3) Troisièmement, l'analyse du 'core'-défensome à travers les espèces bactériennes, avec une validation supplémentaire du concept selon lequel ces gènes (dont beaucoup sont maintenant connus pour être essentiels) peuvent être utilisés comme cibles pour le développement d'antimicrobiens visant à éliminer une espèce bactérienne entière.

MÉTHYLATION DE L'ADN ET ORGANISATION 3D DU GÉNOME BACTÉRIEN

La méthylation de l'ADN chez les bactéries a été traditionnellement étudiée dans le contexte de la défense antiparasitaire. Cependant, les progrès du séquençage qui permettent l'analyse de la méthylation de l'ADN à l'échelle génomique se développent actuellement et ont propulsé une révolution épigénomique dans notre compréhension de l'étendue et de la pertinence physiologique de la méthylation. Généralement, la première étape de l'étude des impacts fonctionnels de la méthylation de l'ADN bactérien consiste à comparer l'expression globale des gènes entre des souches de type sauvage (WT) et des souches mutantes de méthyltransférase (MTase). Plusieurs études utilisant l'ARN-seq pour de telles comparaisons ont montré que la perturbation d'une seule MTase d'ADN entraîne souvent des dizaines, des centaines et parfois des milliers de gènes différentiellement exprimés (DE). Selon le modèle de compétition locale, la liaison compétitive entre une MTase et d'autres protéines liant l'ADN (par exemple, des facteurs de transcription) sur des sites de motifs spécifiques, affecte la transcription d'un gène voisin, entraînant une variation phénotypique au sein de la population bactérienne. Toutefois, si dans certains cas les effets régulateurs des MTases peuvent être attribués de manière concluante à la méthylation au niveau des promoteurs des gènes cibles, la grande majorité (>90%) des gènes DE n'ont pas de sites méthylés dans leurs régions promotrices, ce qui implique que les MTases ne sont pas des agents de régulation de la transcription, et que le modèle de compétition locale ne s'applique pas à la plupart des gènes DE. Une autre possibilité est que l'état de méthylation des motifs individuels régule l'expression d'un facteur de transcription, provoquant un large changement en aval dans l'expression de ses gènes cibles. Cependant, cette dernière hypothèse n'est pas suffisamment explicative pour un si grand nombre de gènes DE. Une hypothèse alternative concerne l'effet de la méthylation de l'ADN sur la topologie des chromosomes, en induisant des changements structurels qui modifient le répertoire des gènes exposés à la machinerie transcriptionnelle cellulaire. Nous avons récemment identifié CamA, une MTase core de Clostridioides difficile méthylant CAAAAA, qui joue un rôle dans la formation du biofilm, la sporulation et la transmission in vivo. De plus, dans une analyse ultérieure à grande échelle, nous avons découvert que CamA n'était que la partie émergée de l'iceberg, avec 45 % des espèces bactériennes de Genbank contenant au moins une MTase core ou quasi core, ce qui montre que ces dernières sont abondantes et suggère que leurs modifications épigénétiques sont également importantes pour les bactéries. En outre, des analogues de la S-adénosyl-l-méthionine (SAM) ont réussi à inhiber CamA, ce qui représente une première étape importante dans la création de thérapeutiques puissantes et sélectives ciblées sur l'épigénétique qui peuvent être exploitées comme nouveaux antimicrobiens.
Dans cette proposition de projet de doctorat, le candidat retenu est invité à déchiffrer l'interaction entre la méthylation bactérienne, l'organisation spatiale du génome et l'expression des gènes en répondant aux questions suivantes : i) la méthylation modifie-t-elle les domaines d'interaction chromosomique ? ii) les gènes DE et/ou les motifs de méthylation cibles sont-ils enrichis dans les limites des domaines d'interaction chromosomique modifiables ? iii) pouvons-nous modifier le méthylome (globalement ou localement) pour réprimer certains agents pathogènes humains ? Il / elle utilisera les technologies de séquençage Hi-C et long-read combinées à la génétique microbienne et à la génomique comparative pour faire progresser notre compréhension dans le domaine de l'épigénomique microbienne.

Etude des liens entre dérégulations du métabolisme et des marques épigénétiques dans la maladie de Huntington

Notre objectif est d’étudier les dérégulations épigénétiques dans la maladie de Huntington (HD). A l’aide de modèles souris, nous appréhenderons les liens entre altérations du métabolisme énergétique et défauts épigénétiques dans les neurones striataux, afin de mieux comprendre le mécanisme de vulnérabilité striatale dans la HD et de définir un nouveau cadre pour le développement de thérapies. Nous voulons obtenir des cartes détaillées des modifications post-traductionnelles (PTMs) des histones, en particulier des méthylations, de l'acétylation et de la lactylation récemment décrite. En effet, ces PTMs sont étroitement régulées par l'état métabolique des cellules. Nous utiliserons la protéomique qui est l'approche la mieux adaptée pour identifier et quantifier les multiples PTMs des protéines. Nous envisageons de travailler sur le striatum de souris WT, transgéniques R6/1 et du modèle plus progressif Q140 knock-in à différents stades de la maladie, afin de suivre l'évolution des PTMs d'histones et du métabolisme lors du vieillissement. En outre, pour obtenir une vision dynamique des liens entre les déséquilibres métaboliques et épigénétiques dans la maladie, nous injecterons du 13C-glucose par voie intrapéritonéale à des souris HD et contrôles, et nous analyserons l'incorporation du 13C dans les PTMs d'histones en fonction du temps. Enfin, il a été démontré que l'acétyl-CoA, le précurseur de l'acétylation des lysines des histones, est produit localement dans le noyau, par l'acétyl-CoA synthétase 2 (ACSS2), l'ATP-citrate lyase (ACLY) ou le complexe pyruvate déshydrogénase. Où et par quelles enzymes le lactate est produit reste une question ouverte. L'ACSS2 est un très bon candidat, car elle peut catalyser la production de molécules d'acyl-CoA à partir des acides gras correspondants. Pour appréhender la possible production de métabolites à proximité de la chromatine dans les cellules striatales, nous obtiendrons les distributions génomiques d'ACSS2 et d'ACLY par ChIPseq/CUT&tag et les comparerons aux distributions de marques d'histones acétylées et lactylées.

Vers une compréhension fine de la régulation de l’expression des gènes par l’acétylation et la lactylation des protéines histones

Dans les cellules eucaryotes, l’ADN s’enroule autour de protéines histones pour former la chromatine. La modification dynamique des histones par diverses structures chimiques permet de réguler finement l’expression des gènes. Des altérations dans ces mécanismes complexes de régulation sont à l’origine de nombreuses maladies. L’acétylation des lysines d’histones est connue pour induire l’expression des gènes. D’autres structures peuvent être ajoutées sur les histones, dont les effets sur la transcription restent largement à élucider. La plupart d’entre elles, comme la lactylation découverte en 2019, dépendent du métabolisme cellulaire. Nous avons commencé l’étude de la lactylation dans la spermatogenèse murine. Ce processus de différentiation cellulaire constitue en effet un modèle de choix pour étudier la régulation de la transcription, du fait de changements spectaculaires dans la composition de la chromatine et dans le programme d’expression génique. Nous avons généré de nouveaux profils épigénétiques consistant en la distribution sur le génome de marques acétylées et lactylées sur trois lysines de l’histone H3. L’objet de cette thèse est de contribuer au déchiffrage du « code histone », d’abord en étudiant le rôle des lactylations sur le programme transcriptionnel. Ensuite, la prédiction d'états chromatiniens sera raffinée en intégrant au sein de modèles de réseaux de neurones nos nouvelles données à l'ensemble des données épigénomiques existant aux deux stades cellulaires étudiés.

ROLE DE L'UNFOLDED PROTEIN RESPONSE DANS LE MAINTIEN DU STOCK DE CELLULES SOUCHES SPERMATOGONIALES CHEZ LA SOURIS ADULTE

Des conditions défavorables (stress oxydatif, déséquilibre des taux de lipides, de glucose ou de calcium, ou inflammation) provoquent l'accumulation de protéines anormales, induisant un stress du RE. L'Unfolded Protein Response (UPR) est activée pour restaurer l'homéostasie cellulaire, mais un stress sévère ou chronique entraîne la mort cellulaire par apoptose. Une dérégulation des voies de signalisation UPR favorise plusieurs maladies humaines (diabète, maladie de Parkinson, maladie d'Alzheimer, maladies du foie, cancer...), mais on ne sait rien de son rôle dans la stérilité de l'homme adulte.
La production de spermatozoïdes repose sur les cellules souches spermatogoniales (CSS) dont le stock est maintenu par autorenouvellement tout au long de la vie. Nous avons montré que l'activité clonogénique des CSS murines en culture est drastiquement réduite par induction de la différenciation cellulaire après induction d'un stress du RE. Un criblage HTS a identifié 2 des 3 branches UPR comme étant impliquées dans l'activité clonogénique des CSS de souris. Le rôle de ces 2 voies UPR sera étudié plus en détail afin de préciser si elles sont impliquées dans l'induction de mort cellulaire ou dans l'équilibre autorenouvellement/ différenciation. Dans les cultures de CSS de souris traitées, la mort cellulaire, le cycle cellulaire, l'induction de la différenciation et la synergie entre voies UPR seront analysés. L'effet de chaque voie étant médié par des facteurs transcriptionnels, les gènes cibles seront caractérisés par RNAseq afin d'identifier les réseaux géniques controlés par l'UPR impliqués dans le devenir des CSS. Pour la voie la plus pertinente, une étude in vivo permettra de confirmer le rôle du facteur UPR dans la fonction et le maintien des CSS.

Top