Développement de la méthode Compton-TDCR pour la métrologie des scintillateurs
Les objectifs de cette thèse se situent en amont du côté applicatif, dans le domaine de la métrologie des radionucléides. Ils visent à obtenir des informations essentielles pour la compréhension des mécanismes de scintillation. Ce sujet constitue une nouvelle discipline pour le laboratoire national de métrologie, inexistante dans les autres laboratoires, et porte spécifiquement sur la métrologie des scintillateurs. Les travaux seront axés sur l’instrumentation et l’analyse des résultats, permettant une meilleure compréhension des phénomènes physiques sous-jacents. Il en résulte la co-direction de thèse entre Benoit Sabot (expert en métrologie de la radioactivité) et Christophe Dujardin (expert en scintillation).
L’un des objectifs expérimentaux majeurs de la thèse sera la mise en place de la nouvelle installation Compton-TDCR [7], permettant la mesure absolue du rendement de scintillation en fonction de l’énergie des électrons. Ce dispositif sera conçu par impression 3D et intègrera des détecteurs germanium haute pureté (GeHP) afin d’augmenter la précision des mesures. Après la caractérisation en énergie et en rendement de ces détecteurs, ils seront intégrés dans le montage final. L’étudiant sera en charge du traitement des signaux à l’aide d’un module numérique générant des fichiers List-Mode. Ces données seront ensuite analysées par un logiciel existant développé en Rust, doté d’une interface Python, actuellement limité à quatre voies. Le nouveau dispositif intégrant jusqu’à trois détecteurs GeHP en plus des trois voies de photomultiplicateurs, il sera nécessaire d’adapter le logiciel pour assurer un traitement optimisé des informations obtenues. Après un réglage précis de l’électronique et une série de tests expérimentaux, les modifications logicielles devront être mises en œuvre afin de garantir l’exploitation complète des données fournies par la plateforme.
Une fois cette première étape achevée et la plateforme fonctionnelle, l’étudiant travaillera sur la compréhension des phénomènes de scintillation. Dans un premier temps, les études porteront sur des matériaux standards tels que les scintillateurs organiques (liquides ou plastiques) et inorganiques. Par la suite, l’investigation s’étendra à des matériaux encore peu explorés, comme les scintillateurs poreux. Cette phase nécessitera une collaboration étroite avec l’Université de Lyon, en particulier avec l’Institut Lumière Matière, où seront réalisées des mesures complémentaires permettant d’affiner l’analyse des phénomènes de scintillation, de compléter les résultats obtenus au laboratoire d’effecteur des simulations permettant de coupler les différents types d’expériences.
L’objectif final de cette installation est d’établir une méthodologie de métrologie des scintillateurs, permettant d’accéder à la courbe de réponse de ces matériaux en fonction des énergies des électrons interagissant dans le milieu, ainsi qu’à leurs propriétés temporelles. Ce travail ouvrira la voie à de nouvelles méthodes de mesure des rayonnements ionisants et apportera une contribution significative à la communauté scientifique dans ce domaine.
Vers une plateforme d’irradiation photonique multimodale : fondements et conceptualisation
Les techniques d’irradiation photonique exploitent les interactions entre un faisceau de photons de haute énergie et la matière pour effectuer des mesures non destructives. En induisant des réactions photonucléaires, telles que l’activation photonique, les résonances de fluorescence nucléaire (NRF) et la photofission, ces techniques d’irradiation permettent de sonder la matière en profondeur. L’association de ces différentes techniques de mesure nucléaire au sein d’une plateforme d’irradiation unique permettrait une identification précise et quantitative d’une grande variété d’éléments, en sondant le volume des matériaux ou objets étudiés. Le faisceau de photons de haute énergie est généralement produit par rayonnement de freinage (phénomène de Bremsstrahlung) au sein d’une cible de conversion d’un accélérateur linéaire d’électrons. Une alternative innovante consiste à exploiter les électrons de haute énergie délivrés par une source laser-plasma, convertis par rayonnement de freinage ou par diffusion Compton inverse. Une plateforme basée sur une telle source offrirait de nouvelles possibilités, car les sources laser-plasma peuvent atteindre des énergies significativement supérieures, permettant ainsi l'accès à de nouvelles techniques et applications d'imagerie avancées. L’objectif de cette thèse est d’établir les fondements et de conceptualiser une plateforme d’irradiation photonique multimodale. Un tel dispositif viserait à se baser sur une source laser-plasma et permettrait la combinaison des techniques d’activation photonique, des résonances de fluorescence nucléaire (NRF) et de la photofission. En repoussant les limites des mesures nucléaires non destructives, cette plateforme offrirait des solutions innovantes à des défis majeurs dans des secteurs stratégiques tels que la sécurité et le contrôle aux frontières, la gestion des colis de déchets radioactifs, ainsi que l'industrie du recyclage.
Modélisation de la dynamique des faisceaux d’électrons dans les accélérateurs linéaires à induction
Cette thèse s’intéresse à la modélisation enveloppe et Particle-In-Cell (PIC) de la dynamique des faisceaux intenses d’électrons dans les accélérateurs à induction (LIA) et à la validation expérimentale de ce modèle. Les LIA utilisés en radiographie éclair transportent des faisceaux d’électrons impulsionnels (quelques dizaines de nanoseconde) à la fois intense (plusieurs kA) et de haute énergie (environ 20 MeV) afin de produire une source pénétrante de rayonnement X de faibles dimensions spatiales par rayonnement de freinage sur un matériau dense. Le faisceau initialement produit à une énergie proche de 4 MeV est injecté dans la ligne accélératrice où les électrons acquièrent progressivement de l’énergie en passant au niveau des gaps accélérateurs de cellules à induction. Dans un LIA, la compréhension et la maîtrise de la dynamique des faisceaux d’électrons sont nécessaires au succès d’une expérimentation réalisée dans des conditions extrêmes.
De nombreuses propriétés d’intérêt du faisceau d’électrons (dimension, position, quantité de mouvement, énergie, émittance) contribuent aux caractéristiques de la source de rayonnement X, elles-mêmes directement reliées à la qualité de la radiographie finale. Les énergies et les intensités des faisceaux sont telles que les forces auto-induites jouent un rôle clé dans leur dynamique. Les codes de simulations contribuent de manière significative à la compréhension et à la maitrise de la dynamique du faisceau. Aujourd’hui, l’étude de cette dynamique est majoritairement réalisée avec des codes enveloppe qui permettent de l’appréhender macroscopiquement et qui fournissent un formalisme intéressant d’un point de vue opérationnel pour régler le transport du faisceau. La méthode PIC, complémentaire de l’approche enveloppe, est également utilisée pour simuler la dynamique du faisceau. Elle permet une description plus complète de la physique mise en jeu dans les LIA [1] en reproduisant la quasi-totalité des phénomènes (accroissement d’émittance, évolution des distributions des particules, développement des instabilités de faisceau …) au prix cependant d’une importante mobilisation de ressources de calcul. De plus, elle permet d’appréhender les phénomènes mis en jeu lors d’un fonctionnement à plusieurs impulsions [2].
L’objectif de cette thèse est d’étudier par modélisations enveloppe et PIC la dynamique des faisceaux intenses d’électrons dans les accélérateurs à induction de l’installation EPURE et de valider ce modèle expérimentalement. Cette étude permettra de quantifier et intégrer les phénomènes physiques participant à l’évolution des propriétés du faisceau lors de son transport. Les outils développés lors de cette étude serviront à optimiser et prédire le transport en intégrant notamment les instabilités de type Beam Break-Up, Corkscrew ou ion hose qui dégradent la qualité du faisceau d’électrons. L’étude de l’impact de ces différentes contributions sur le transport du faisceau permettra d’évaluer les performances d’un accélérateur fonctionnant en simple ou en multi-impulsions. Dans un premier temps, l’étudiant se familiarisera aux codes PIC et enveloppe décrivant la dynamique des faisceaux dans les LIA en vue de les améliorer notamment au moyen d’algorithme génétique permettant d’optimiser le transport via les nombreux éléments de guidage du faisceau (solénoïdes, déviateurs …). Puis, l’évaluation et la prise en compte de phénomènes physiques complémentaires seront réalisées. Une validation du modèle de simulation sera ensuite faite à partir des données expérimentales obtenues sur les LIA de l’installation EPURE. Des stratégies de transports adaptées à des cas opérationnels et prospectifs multi-impulsions pourront être proposés sur les bases du modèle développé.
[1] J.M. Plewa et al., “High power electron diode for linear induction accelerator at a flash radiographic facility”, Phys. Rev. Accel. Beams, 21, 070401 (2018).
[2] R. Delaunay et al., “Dual-pulse generation from a velvet cathode with a new inductive voltage adder for x-ray flash radiography applications”, Phys. Rev. Accel. Beams, 25, 060401 (2022).
Etude et modélisation de l'impact de rayonnements ionisants sur des composants rapides innovants
Le CEA Gramat est le centre de référence de la Défense en vulnérabilité des systèmes et des infrastructures et efficacité des armements. Le Service des Effets Radiatifs et Electromagnétiques étudie la vulnérabilité de composants électroniques aux effets induits par des particules de haute énergie. Ces études ont pour objectif d’estimer le degré de susceptibilité de ces systèmes en environnement radiatif sévère. Les technologies de composants électroniques évoluent rapidement pour répondre aux exigences croissantes de vitesse, transmission de puissance, compacité, bande passante, fonctionnement à des températures élevées. Les nouveaux composants vont permettre de répondre aux besoins futurs des applications hyperfréquences et aux problématiques de la commutation rapide de puissance. Dans le cadre des domaines de l'aérospatial, de la défense, du nucléaire, du médical, et des recherches de physiques, ces composants devront en plus résister à l'impact de rayonnements ionisants.
L'objectif de cette thèse est d'étudier l'impact de rayonnements ionisants (exemples X, électrons, protons…) sur des composants innovants utilisés dans le domaine de l'émission en radio-fréquence et en commutation rapide. L'étude envisagée porte principalement sur des matériaux à grand gap (exemple GaN et SiC) mais d'autres technologies prometteuses pourront être envisagées. Les composants seront étudiés dans des régimes de fonctionnement dynamiques dans leur contexte d'utilisation. Cette thèse sera constituée d'un volet expérimental important qui permettra d'observer et de quantifier les effets de l'irradiation sur les différents composants. En parallèle, le second volet aura pour objectif de modéliser et d'expliquer les effets observés, notamment en dynamique, afin de déterminer quelles structures et quels matériaux sont les plus aptes à être utilisés dans les futures applications.
Cette thèse s'effectuera avec le laboratoire XLIM de l'Université de Limoges et fera l'objet de collaborations avec la société INOVEOS. Elle débutera par une étude bibliographique qui permettra d'identifier les composants d'intérêt. Ensuite l'approvisionnement, la conception et la réalisation des cartes de test seront conduits par le doctorant. La méthode de métrologie et le banc de test seront définis avant de procéder aux essais sous différents moyens d'irradiation qui auront lieu principalement au CEA. Une phase d'identification de la structure des composants sera réalisée avant et après irradiation. En parallèle, la modélisation du composant et la simulation de l'impact de l'interaction rayonnement matière seront réalisées à l'aide différents codes de calculs (exemple MCNP, GEANT4, TCAD, ADS, CST...).
Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel
L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.
Développement d'un modèle stochastique multiphysique pour les mesures basées sur la scintillation liquide
Pour assurer la traçabilité métrologique au niveau international dans le domaine de l’activité, le Bureau international des poids et mesures (BIPM) développe un nouvel instrument de transfert appelé « Extension du Système International de Référence » (ESIR) fondé sur la méthode dite du Rapport de Coïncidence Triples à Doubles (RCTD) basée sur des comptages en scintillation liquide avec une instrumentation spécifique à trois photomultiplicateurs. L’objectif est de permettre les comparaisons internationales de radionucléides bêta purs, de certains radionucléides se désintégrant par capture électronique, et pour faciliter les comparaisons internationales de radionucléides émetteurs de particules alpha.
La méthode RCTD est une technique de mesures primaires d'activité utilisée dans les laboratoires nationaux. Pour déterminer l’activité, son application repose sur la construction d’un modèle d’émission de photons lumineux nécessitant la connaissance de l’énergie déposée dans le scintillateur liquide. Selon le schéma de désintégration, la combinaison des différentes énergies déposées peut être complexe, en particulier lorsqu’elle résulte du réarrangement électronique suite à une désintégration par capture électronique. L’approche stochastique du modèle RCTD s’applique en échantillonnant aléatoirement les différentes émissions de rayonnements ionisants suite à une désintégration. L’ajout récent de modules de lecture automatique des données nucléaires (comme celles disponibles dans la Table des Radionucléides) dans des codes de simulations rayonnements/matière (PENELOPE, GEANT4), permet une prise en compte rigoureuse de toutes les combinaisons possibles. L’approche stochastique permet de considérer l’énergie réelle déposée dans le flacon de scintillation liquide en prenant en compte les interactions dans l’ensemble de l’instrumentation.
La thèse a pour objectif le développement d’une approche stochastique multiphysique avec le code de simulation rayonnements/matière GEANT4 pour être notamment appliquée sur le système ESIR du BIPM. Le choix du code Geant4 offre la possibilité d’intégrer le transport des particules ionisantes et des photons de scintillation. Ce développement est d’un grand intérêt pour la métrologie de la radioactivité dans le but d’assurer la traçabilité métrologique à un plus grand nombre de radionucléides avec le système ESIR du BIPM. La thèse se fera en collaboration avec le Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) qui possède déjà une expérience dans le développement d’un modèle stochastique avec le code GEANT4 pour son instrumentation dédiée à la méthode RCTD au Laboratoire national Henri Becquerel (LNE-LNHB).
Développement d'un cadre d'analyse basé sur le ML pour la caractérisation rapide des conteneurs de déchets nucléaires par tomographie muonique
Cette thèse de doctorat vise à développer un cadre d'analyse avancé pour l'inspection des conteneurs de déchets nucléaires à l'aide de la tomographie muonique, et plus particulièrement via la méthode par diffusion des muons. La tomographie muonique, qui exploite les muons naturels issus des rayons cosmiques pour scanner des structures denses, s'est avérée précieuse dans des domaines dans lesquels les méthodes d'imagerie traditionnelles sont inefficaces. Le CEA/Irfu, avec son expertise dans les détecteurs de particules, cherche à exploiter l'intelligence artificielle (IA) et le Machine Learning (ML) pour optimiser l'analyse des données des muons, notamment pour réduire les temps d'exposition et améliorer la fiabilité des images.
Le projet consistera à se familiariser avec les principes de la muographie, à simuler les interactions des muons avec les conteneurs de déchets et à développer des techniques de traitement d'images et d'augmentation de données basées sur le ML. Le résultat devrait aboutir à des outils efficaces permettant d'interpréter les muographies (images de tomographie muonique), d’accélérer l’analyse et de classifier de manière fiable le contenu des conteneurs. L'objectif de la thèse est d'améliorer la sécurité et la fiabilité de l'inspection des déchets nucléaires en produisant des muographies plus nettes, plus rapides et plus interprétables grâce à des méthodes d'analyse innovantes.