Radiothérapie VHEE avec des faisceaux d'électrons issus d'un accélérateur laser-plasma

Les programmes de recherche menés au sein du Laboratoire Interactions et Dynamique des Lasers (Lidyl) du Commissariat à l’Énergie Atomique (CEA) visent à comprendre les processus fondamentaux impliqués dans les interactions lumière-matière et leurs applications. Au sein du CEA-LIDYL, le groupe Physique à Haute Intensité (PHI) étudie les interactions laser-matière à des intensités extrêmes, pour lesquelles la matière se transforme en plasma ultra-relativiste. À l'aide de la théorie, de simulations et d'expériences, les chercheurs développent et testent de nouveaux concepts pour contrôler l'interaction laser-plasma dans le but de produire de nouvelles sources d'électrons relativistes et de lumière attoseconde X-UV, pouvant avoir des applications en recherche fondamentale, médecine ou pour l'industrie.

En collaboration avec le Lawrence Berkeley National Laboratory (LBNL), le groupe contribue fortement au développement du code WarpX utilisé pour la modélisation haute fidélité des interactions laser-matière. Il est également à l'origine de l'étude et du contrôle de composants optiques remarquables appelés "miroirs - plasma", qui peuvent être obtenus en focalisant un laser de forte puissance avec un contraste élevé sur une cible initialement solide. Au cours des cinq dernières années, le groupe PHI a développé des concepts fondamentaux exploitant les miroirs plasma pour manipuler la lumière extrême afin de repousser les frontières de la science à haut champ. L'un de ces concepts utilise les miroirs plasma comme injecteurs de haute charge pour augmenter la charge produite dans les accélérateurs laser-plasma (LPA) afin de permettre leur utilisation pour des études médicales, telles que la radiothérapie par électrons de très haute énergie (VHEE). Ce concept est mis en œuvre au CEA sur l'installation laser UHI100 100 TW en 2025 pour délivrer des faisceaux d'électrons de 100 MeV - 200 MeV avec 100 pC de charge/impulsion pour l'étude du dépôt à haut débit de dose d'électrons VHEE sur des échantillons biologiques.

Dans ce contexte, le doctorant utilisera notre outil de simulation WarpX pour optimiser les propriétés du faisceau d'électrons produit par les LPA pour les études VHEE (qualité du faisceau d'électrons et énergie finale). Il étudiera ensuite la manière dont le faisceau d'électrons des LPA dépose son énergie dans des échantillons d'eau (en tant que milieu biologique) à l'aide de Geant4. Cela permettra d'évaluer le dépôt de dose à un débit de dose très élevé et de développer de nouvelles techniques de dosimétrie pour les faisceaux d'électrons LPA VHEE. Enfin, la production et le devenir des espèces réactives de l'oxygène (ROS) dans l'eau seront étudiés à l'aide de la boîte à outils Geant4-DNA. Ce module dispose principalement de données tabulées à des énergies d'électrons inférieures à 10 MeV et nécessitera donc des mesures de la section transversale des processus d'ionisation de l'eau à partir d'expériences à 100 MeV. Ces mesures seront effectuées sur le laser UHI100 100 TW par le groupe DICO du CEA-LIDYL, en collaboration avec le groupe PHI.

Miroirs plasmas: vers des sources lumineuses d'intensités extrêmes et des accélerateurs d'électrons compacts de haute-qualité

Les programmes de recherche menés au sein du Laboratoire Interactions et Dynamique des Lasers (Lidyl) du Commissariat à l’Énergie Atomique (CEA) visent à comprendre les processus fondamentaux impliqués dans les interactions lumière-matière et leurs applications. Au sein du CEA-LIDYL, le groupe Physique à Haute Intensité (PHI) étudie les interactions laser-matière à des intensités extrêmes, pour lesquelles la matière se transforme en plasma ultra-relativiste. À l'aide de la théorie, de simulations et d'expériences, les chercheurs développent et testent de nouveaux concepts pour contrôler l'interaction laser-plasma dans le but de produire de nouvelles sources d'électrons relativistes et de lumière attoseconde X-UV, avec des applications potentielles en recherche fondamentale, médecine et pour l'industrie.

En collaboration avec le Lawrence Berkeley National Laboratory, le groupe est l'un des principaux développeurs des codes exascales Particle-In-Cell (PIC) WarpX/PICSAR pour la modélisation haute fidélité des interactions laser-matière. Il est également à l'origine de l'étude et du contrôle de composants optiques remarquables appelés "miroirs - plasma", qui peuvent être obtenus en focalisant un laser de forte puissance avec un contraste élevé sur une cible initialement solide. Au cours des cinq dernières années, le groupe PHI a développé deux concepts exploitant les miroirs plasma pour manipuler la lumière extrême afin de repousser les frontières de la science de haut niveau. Le premier concept utilise des miroirs plasma relativistes pour amplifier l'intensité des lasers existants par des ordres de grandeur et sonder de nouveaux régimes de l'électrodynamique quantique à champ fort (SF-QED). Le second utilise des miroirs plasma comme injecteurs de charge élevée pour augmenter la charge produite dans les accélérateurs laser-plasma (LPA) afin de permettre leur utilisation pour des études médicales, des applications industrielles et la recherche fondamentale (conception de collisionneurs, collisions électron-laser pour les études SF-QED).

Dans ce contexte, le candidat au doctorat aura pour tâche d'améliorer d'abord notre outil de simulation WarpX pour accélérer les simulations de miroirs à plasma. Il utilisera ensuite WarpX pour optimiser l'utilisation des miroirs plasma comme amplificateurs d'intensité pour l'étude de la SF-QED. En collaboration avec l'équipe de Brigitte Cros au CNRS et dans le cadre de la conception de nouveaux collisionneurs basés sur des accélérateurs laser-plasma (LPA), le doctorant étudiera et optimisera l'utilisation de miroirs plasma comme composants optiques pour le couplage de plusieurs étages LPA. Cela sera crucial pour développer des schémas d'accélération compacts qui peuvent être mis à l'échelle pour produire des faisceaux d'électrons de haute énergie et de haute qualité.

Courants de spin ultrarapides et oxydes ferroïques

Cette thèse s’inscrit dans le domaine de la spintronique ultrarapide et de l’étude des courants de spin à des échelles de temps sub-picosecondes. Les courants de spin purs suscitent un intérêt croissant en raison de leur rôle central dans le développement de dispositifs spintroniques de nouvelle génération. Face à l’explosion de la consommation de données, les technologies de l’information et de la communication doivent désormais traiter des volumes toujours plus importants, à des vitesses accrues et avec une consommation énergétique minimale.

Dans ce contexte, la manipulation ultrarapide de l’information constitue un enjeu majeur. Les courants de spin purs présentent plusieurs avantages décisifs : en plus de se propager sans dissipation, ils peuvent aujourd’hui être générés, transmis et détectés à des échelles de temps de l’ordre de quelques centaines de femtosecondes. Cette avancée ouvre la voie à l’émergence de composants et dispositifs spintroniques ultrarapides, potentiellement opérationnels dans la gamme térahertz. L’objectif de ce projet de thèse est d’étudier les mécanismes fondamentaux impliqués dans la génération et la propagation des courants de spin purs aux échelles de temps picosecondes et sub-picosecondes, avec un intérêt particulier pour les oxydes ferroïques. Ces matériaux présentent une grande diversité de propriétés remarquables et ajustables, ce qui en fait des systèmes idéaux pour la fonctionnalisation des courants de spin ultrarapides et pour relever les défis sociétaux de demain.

Le cœur du travail de thèse consistera à mettre en œuvre des techniques d’optique et de magnéto-optique résolues en temps, afin de sonder la dynamique magnétique ultrarapide de couches minces épitaxiées d’oxydes ferromagnétiques et antiferromagnétiques. Les résultats attendus visent à lever plusieurs verrous scientifiques : d’une part, l’ajustabilité de la génération de courants de spin ultrarapides via la demi-métallicité de certains oxydes ferromagnétiques ; d’autre part, le contrôle de la propagation de l’information de spin à des fréquences térahertz dans les oxydes antiferromagnétiques.

Polymérisation et diffusion de l'hémoglobine dans des composés mixtes HbYxHbS(1-x) avec Y=At, A0, F…

La drépanocytose (SCD) est une maladie génétique du sang provoquant une anémie. Elle résulte de la polymérisation d'une hémoglobine mutée (HbS), la protéine transporteuse d'oxygène présente dans les globules rouges (GR), qui provoque la déformation des cellules biconcaves souples en une forme de faucille rigide lorsqu’elle est désoxygénée. Les cellules déformées induites par la polymérisation vont obstruer les capillaires sanguins, ce qui induit une augmentation de la pression artérielle et à terme une dégénérescence des différents organes. Les traitements pharmacologiques de la drépanocytose comprennent l'hydroxyurée, une molécule qui favorise la synthèse de l'hémoglobine fœtale (HbF) qui conduit à un mélange d'hémoglobine HbFxHbS(1-x) dans le sang, l'HbF inhibant partiellement la polymérisation de l'HbS. La thérapie génique est également utilisée pour le traitement de cette maladie en stimulant la production d'hémoglobine thérapeutique (HbAt) ou d'hémoglobine normale (HbA0). En collaboration avec le Service des Maladies Génétiques des Globules Rouges de l'hôpital Henri-Mondor, nous proposons d'étudier l'effet de l'ajout de différents types d'hémoglobine sur le processus de polymérisation ainsi que la cinétique de capture de l'oxygène au niveau des globules rouges. Cette étude modèle est directement liée aux traitements développés pour guérir cette maladie et vise à tenter de mieux les comprendre d’un point de vue moléculaire.

Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde

Le projet de thèse est axé sur l'étude avancée de la dynamique de photoémission attoseconde. L'objectif est d'accéder en temps réel aux processus de décohérence induits, par exemple, par l'intrication quantique électron-ion. Pour ce faire, l’étudiant-e développera des techniques de spectroscopie attoseconde utilisant un nouveau laser Ytterbium à taux de répétition élevé.

Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d'impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l'exploration de la matière à l'échelle de temps intrinsèque de l'électron : la spectroscopie attoseconde permet d'étudier en temps réel le processus quantique de photoémission et de filmer en 3D l'éjection du paquet d'ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d'outils expérimentaux et théoriques pour traiter la décohérence et l'intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].

L'objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d'accéder à l'évolution en temps réel de la décohérence et de l'intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l'aide d'une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d'utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l'intrication quantique avec une précision sans précédent.

Ce projet de thèse s'inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L'étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.

Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)

Mesure de la réponse intra-pixel de détecteur infrarouge à base de HgCdTe avec des rayons X pour l’astrophysique

Dans le domaine de l'astrophysique infrarouge, les capteurs de photons les plus utilisés sont des matrices de détecteur basées sur le matériau absorbant HgCdTe. La fabrication de tels détecteurs est une expertise mondialement reconnue du CEA/Leti à Grenoble. Quant au département d'astrophysique (DAp) du CEA/IRFU, il possède une expertise reconnue dans la caractérisation de ce type de détecteurs. Une caractéristique majeure est la réponse spatiale du pixel (RSP), elle caractérise la réponse d'un pixel élémentaire de la matrice à la génération ponctuelle de porteurs au sein du matériau absorbant à divers endroits dans le pixel. Aujourd’hui cette caractéristique des détecteurs devient un paramètre clef des performances instruments, elle est critique lorsqu’il s’agit par exemple de mesurer la déformation de galaxie, ou de faire de l’astrométrie de précision. Il existe différentes méthodes existent pour mesurer cette grandeur (projection de sources lumineuses ponctuelles, méthodes interférentielles). Ces méthodes sont complexes à mettre en œuvre, notamment aux températures cryogéniques de fonctionnement des détecteurs.
Au DAp, nous proposons une nouvelle méthode, basée sur l’utilisation de photons X pour mesurer la RSP de détecteur infrarouge : en interagissant avec le matériau HgCdTe, le photon X va générer des porteurs localement. Ces porteurs vont diffuser avant d’être collectés. L’objectif est ensuite de remonter à la RSP en analysant les images obtenues. Nous suggérons une approche à deux volets, intégrant à la fois des méthodes expérimentales et des simulations. Des méthodes d’analyse de données seront aussi développées. Ainsi, l’objectif final de cette thèse est de développer une nouvelle méthode, robuste, élégante et rapide de mesure de la réponse intra-pixel de détecteur infrarouge pour l’instrumentation spatiale. L’étudiant.e sera basé au DAp. Ce travail implique également le CEA/Leti, combinant l'expertise instrumentale du DAp avec les connaissances technologiques du CEA/Leti.

Développement et caractérisation d'une ligne de lumière stabilisée à 13,5 nanomètres portant un moment angulaire orbital

La gamme d'énergie de photons de l'extrême ultraviolet (EUV, 10-100 nm) est cruciale pour de nombreuses applications allant de la physique fondamentale (attophysique, femto-magnétisme) aux domaines appliqués telles que la lithographie et la microscopie à l'échelle du nanomètre. Cependant, il n'existe pas de source naturelle de lumière dans ce domaine spectral sur Terre, car les photons sont fortement absorbés par la matière, ce qui nécessite un environnement sous vide. Il faut donc s'en remettre à des sources coûteuses, telles que les synchrotrons, les lasers à électrons libres ou les plasmas générés par des lasers intenses. La génération d'harmoniques laser d'ordre élevé (HHG), découverte il y a 30 ans et récompensée par le prix Nobel de physique en 2023, est une alternative prometteuse en tant que source de rayonnement EUV à l'échelle du laboratoire. Basée sur une interaction fortement non linéaire entre un laser de très courte durée et un gaz atomique, elle permet l'émission d'impulsions EUV d'une durée allant de la femtoseconde à l'attoseconde, avec des propriétés de cohérence très élevées et des flux relativement importants. Malgré des recherches intensives qui ont permis de comprendre clairement le phénomène, son utilisation a jusqu'à présent été essentiellement circonscrite aux laboratoires. Pour combler le fossé qui nous sépare des applications industrielles, il faut accroître la fiabilité de ces lignes de lumière, soumises à d'importantes fluctuations en raison de la forte non-linéarité du mécanisme, et développer des outils pour mesurer et contrôler leurs propriétés.

Le CEA/LIDYL et la PME Imagine Optic ont récemment réuni leur expertise dans un laboratoire commun afin de développer une ligne de faisceau EUV stable dédiée à la métrologie et aux capteurs EUV. Le laboratoire NanoLite, hébergé au CEA/LIDYL, est basé sur une ligne de faisceau HHG compacte à haut taux de répétition fournissant des photons EUV autour de 40eV. Plusieurs capteurs de front d'onde EUV ont été étalonnés avec succès au cours des dernières années. Cependant, de nouveaux besoins sont apparus récemment, entraînant la nécessité de moderniser la ligne de faisceau.

Le premier objectif du doctorant sera d'installer une nouvelle géométrie HHG sur la ligne de faisceau afin d'améliorer sa stabilité et son efficacité globales et d'augmenter l'énergie des photons à 92eV, une cible en or pour la lithographie. Il mettra ensuite en œuvre la génération d'un faisceau EUV porteur d'un moment angulaire orbital et améliorera le détecteur d'Imagine Optic pour caractériser son contenu en OAM. Enfin, avec l'aide des ingénieurs d'Imagine Optic, il développera une nouvelle fonctionnalité pour leurs capteurs de front d'onde afin de permettre la caractérisation de grands faisceaux.

Effet de la radiolyse de l’eau sur le flux d’absorption d’hydrogène par les aciers inoxydables austénitiques en réacteur nucléaire à eau pressurisée

Dans les réacteurs nucléaires à eau pressurisée, les éléments constitutifs du cœur sont exposés à la fois phénomènes de corrosion en milieu primaire, de l’eau pressurisée sous 150 bar et 300 °C environ, et à un flux neutronique. Les aciers inoxydables du cœur subissent des dommages dus à la combinaison du bombardement neutronique et de la corrosion. De plus, la radiolyse de l’eau peut impacter les mécanismes et cinétiques de corrosion, la réactivité du milieu et a priori les mécanismes et cinétique d’absorption d’hydrogène par ces matériaux. Ce dernier point, non étudié encore, peut s’avérer problématique car l’hydrogène en solution solide dans l’acier peut conduire à la modification (et la dégradation) des propriétés mécaniques de l’acier et induire une fissuration prématurée de la pièce. Cette thèse très expérimentale sera centrée sur l’étude de l’impact des phénomènes de radiolyse sur les mécanismes de corrosion et de prise d’hydrogène d’un acier inoxydable 316L exposé au milieu primaire sous irradiation. L’hydrogène sera tracé par le deutérium, et l’irradiation neutronique simulée par irradiation électronique sur accélérateurs de particules. Une cellule perméation existante sera reconfigurée pour permettre de mesurer in operando par spectrométrie de masse le flux de perméation de deutérium à travers un échantillon exposé au milieu primaire simulé en conditions de radiolyse. La distribution de l’hydrogène dans le matériau, ainsi que la nature des couches d’oxydes formées, seront analysées finement à l’aide des techniques de pointe disponibles au CEA et dans les laboratoires partenaires. Le(a) doctorant(e) devra in fine (i) identifier les mécanismes en jeu (corrosion et entrée d’hydrogène), (ii) en estimer les cinétiques et (iii) modéliser l’évolution du flux d’hydrogène dans l’acier fonction de l’activité de la radiolyse.

Influence de la densité d'ionisation dans l'eau sur des solutés fluorescents. Application à la Détection de rayonnements alpha

La localisation et l’identification rapide, à distance, des sources d’émission de particules alpha et beta sur les surfaces ou des cavités humides ou dans des solutions, dans des installations nucléaires en démantèlement, ou à assainir, est un véritable enjeu.

Le projet de thèse proposé vise à développer un concept de détection à distance d'une lumière de fluorescence issue de processus de radiolyse de l'eau sur des molécules ou des nano-agents. La caractérisation temporelle par des mesures de durées de vie de fluorescence permettra d’attribuer la détection à un type de rayonnement, dépendant de son transfert d'énergie linéique (TEL). Dans le pic de Bragg des rayonnements alpha où le TEL est maximal, la densité d'ionisation due à ce TEL influence la durée de vie de fluorescence. Cependant, des effets de débits de dose seront aussi à considérer.

Des molécules et nanoparticules candidates à former des produits fluorescents et sensibles à la densité d’ionisation et de radicaux produits dans les traces à temps très courts, seront identifiées par un travail guidé de bibliographie, puis testées et comparées par des mesures. Les mesures spectrales (absorption et fluorescence) et des durées de vie de fluorescence des espèces fluorescentes correspondantes seront réalisées en utilisant la méthode TCSPC (Time Corelated Single Photon Counting) multicanale (16 canaux). Des faisceaux d'ions ou des particules alpha provenant de sources scellées seront utilisés pour faire une preuve de concept dans le cadre du programme CEA assainissement/démantèlement.

Nanostructures Organiques 2D Covalentes par Réticulation Optiquement Contrôlée d’auto-assemblages moléculaires

L’auto-assemblage de molécules sur substrat cristallin permet d’aboutir à des structures 2D non-covalentes présentant des propriétés intéressantes pour différents domaines tels que l’optoélectronique ou les capteurs. La stabilisation de ces réseaux 2D en réseaux covalents est alors un enjeu de taille et un sujet d’actualité. Différentes démonstrations font état de réticulation déclenchée par des processus thermiques. A contrario, la photoréticulation est peu décrite et pour les quelques exemples trouvés, elle est employée dans des conditions d’ultra-vide.

Sur la base du savoir-faire précédemment développé et de l’expertise complémentaire de collaborateurs chimistes, nous nous proposons de mettre en oeuvre une photoréticulation de réseaux 2D à pression atmosphérique. Pour cela, un système modèle d’oligophényles fonctionnalisés pour permettre une photoréticulation et l’obtention d’un réseau 2D covalent sera utilisé. Les réseaux obtenus seront caractérisés en corrélant spectroscopie optique et microscopie à sonde locale pour suivre et mettre en évidence les processus de réticulation photo-induite à l’échelle de la longueur d’onde.

Top