Nanostructures Organiques 2D Covalentes par Réticulation Optiquement Contrôlée d’auto-assemblages moléculaires
L’auto-assemblage de molécules sur substrat cristallin permet d’aboutir à des structures 2D non-covalentes présentant des propriétés intéressantes pour différents domaines tels que l’optoélectronique ou les capteurs. La stabilisation de ces réseaux 2D en réseaux covalents est alors un enjeu de taille et un sujet d’actualité. Différentes démonstrations font état de réticulation déclenchée par des processus thermiques. A contrario, la photoréticulation est peu décrite et pour les quelques exemples trouvés, elle est employée dans des conditions d’ultra-vide.
Sur la base du savoir-faire précédemment développé et de l’expertise complémentaire de collaborateurs chimistes, nous nous proposons de mettre en oeuvre une photoréticulation de réseaux 2D à pression atmosphérique. Pour cela, un système modèle d’oligophényles fonctionnalisés pour permettre une photoréticulation et l’obtention d’un réseau 2D covalent sera utilisé. Les réseaux obtenus seront caractérisés en corrélant spectroscopie optique et microscopie à sonde locale pour suivre et mettre en évidence les processus de réticulation photo-induite à l’échelle de la longueur d’onde.
Nucléation, Croissance et Propriétés Structurales Multi-Echelle de Nanoparticules Colloïdales d’Oxydes d’Actinides (Pu, U, Th)
Les oxydes nanocristallins possèdent des propriétés physico-chimiques uniques, modulées par leur taille et leur structure locale, les rendant prometteurs pour diverses applications technologiques. Cependant, les nanoparticules d’oxydes d’actinides restent encore peu étudiées, en raison de leur radioactivité et toxicité. Néanmoins, les études qui leur sont consacrées sont grandissantes, motivées par des raisons environnementales ou industrielles, notamment pour leur implication dans les cycles du combustible nucléaire actuels et futurs. Cette thèse cible le plutonium, un élément clé des réacteurs nucléaires. Son comportement en solution est complexe, notamment en raison des réactions d’hydrolyse qui conduisent à la formation de nanoparticules colloïdales de PuO2 extrêmement stables. Bien que ces espèces soient aujourd’hui mieux décrites, les mécanismes conduisant à leur formation restent encore peu explorés.
L'objectif ambitieux de cette thèse est de percer les mécanismes fondamentaux en lien avec la formation de ces nanoparticules en adoptant une approche systématique combinant une large gamme de paramètres expérimentaux. Ceux-ci incluent le milieu de synthèse, la température, la concentration des réactifs, la durée de réaction ou encore l'apport de la sonochimie. L’accent sera mis sur l’étude des étapes de nucléation et de croissance de ces nanoparticules, ainsi que sur leurs propriétés structurales en fonction des conditions physico-chimiques qui influencent leur formation. Des études seront conjointement réalisées à l’ICSM avec les éléments Th, U et Zr en tant qu’analogues et sur l’installation Atalante pour le Pu. Au-delà des techniques usuelles de laboratoire nécessaires à la caractérisation de ces systèmes, des expériences complémentaires seront réalisées sur des lignes synchrotron (SOLEIL et ESRF) afin de caractériser de manière approfondie les propriétés structurales et réactionnelles de ces espèces et de leur précurseur.
Synthèses innovantes de perovzalates et rationalisation du mécanisme de formation par méthodes de synchrotron
Les « perovzalates » sont une nouvelle famille de perovskites hybrides à base d’oxalate, avec une dizaine d’exemples répertoriés depuis 2019 (AILi3MII(C2O4)3 , avec A = K+, Rb+, Cs+, NH4+; M = Fe2+, Co2+, Ni2+). Tout comme les perovskites conventionnelles, elles sont potentiellement intéressantes pour d’innombrables applications (catalyse, optique, solaire etc.), en présentant des avantages supplémentaires liés à l’anion oxalate, qui permet d’incorporer des cations plus volumineux que dans les autres pervovskites hybrides, tout en préservant un structure cristalline semblable aux perovskites d’oxyde.
Cependant, cette classe de nouveaux matériaux est encore à peine explorée, et les synthèses loin d’être maitrisées : les quelques rapports à ce jour produisent systématiquement des mélanges de phases, et portent sur des monocristaux prélevés dans les solutions hétérogènes. Dans ce contexte, la problématique majeure est d’arriver à synthétiser une classe étendue de perovzalates pures.
Cette thèse relève ce défi en exploitant une propriété découverte au laboratoire : la cristallisation des oxalates de métaux par coprécipitation dans l’eau passe par des « émulsions minérales » transitoires, c’est-à-dire des nano-gouttelettes riches en réactifs qui se séparent de l’eau. L’originalité de ce sujet de thèse est d’exploiter la nanostructuration apportée par ces émulsions minérales, et de tester notamment à l’aide de techniques nanotomographiques accessibles en synchrotron si elles permettent de confiner les cations jusqu’à la cristallisation.
Radiothérapie avec électrons à très haute énergie issus d'un accélérateur de champ de sillage laser
Objectifs de la recherche :
Utiliser la modélisation numérique pour optimiser les propriétés des accélérateurs laser-plasma dans la gamme 50 MeV-200 MeV pour la radiothérapie VHEE :
(i) optimiser les propriétés d'un accélérateur laser-plasma (étalement de l'énergie, divergence) avec des faisceaux d'électrons injectés à partir d'un injecteur à miroir plasma en utilisant les codes WarpX et HiPACE++.
(ii) Étudier l'impact de ces faisceaux d'électrons sur l'ADN à l'aide de Geant4DNA.
Cette modélisation numérique sera ensuite utilisée pour guider/concevoir/interpréter des expériences de radiobiologie sur des échantillons biologiques in-vitro qui sont prévues dans notre installation laser interne de 100 TW au CEA pendant le projet. Ces expériences seront réalisées dans le cadre du projet de recherche FemtoDose financé par l'Agence Nationale de la Recherche.
Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le HPC et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay, qui propose des cours de maîtrise en radiobiologie et héberge également un centre de recherche (INanoTherad) dédié aux nouveaux traitements de radiothérapie, réunissant des physiciens, des radiobiologistes et des médecins. Les activités seront menées dans le cadre du réseau doctoral d'action Marie Sklodowska Curie EPACE (European compact accelerators, their applications, and entrepreneurship).
Etude et utilisation de verres à l’uranium pour la détection des neutrons par voie optique
Le Laboratoire de Dosimétrie, Capteurs et Instrumentation du CEA/IRESNE Cadarache, développe, fabrique et exploite des détecteurs de flux neutroniques qui sont utilisés à proximité immédiate ou à l’intérieur des cœurs des réacteurs nucléaires. En plus des détecteurs classiques (chambres à fissions, collectrons…), le LDCI mène des recherches actives sur des voies de mesures innovantes telles que des détecteurs optiques, semi-conducteurs, scintillateurs fibrés… Avec cette thèse, le laboratoire souhaite explorer le potentiel de verres dopés à l’Uranium. Ces verres sont connus pour produire une vive fluorescence sous différents rayonnements. L’idée maitresse est d’essayer d’exploiter cette fluorescence pour détecter les réactions de fission qui sont induites dans le verre lorsqu’il est exposé à un flux de neutrons. Cela permettrait de développer une nouvelle génération de détecteurs de neutrons par voie optique à mi-chemin entre une chambre à fission et un scintillateur.
Le travail de thèse sera articulé autour de deux grand axes :
- d’une part la compréhension fine des mécanismes de fluorescence, ainsi que la synthèse de verre à l’uranium aux propriétés optimisés pour nos besoins (sensibilité, spectre d’émission, vecteur isotopique…). La synthèse sera effectuée dans des laboratoires partenaires ;
- d’autre part le développement d’une instrumentation dédiée, probablement sous la forme de fibres optiques, pour tester ces prototypes en réacteur.
Miroirs plasmas pour des sources de lumière à des intensités extrêmes et pour des accélérateurs compactes d'électrons
Objectifs de la recherche :
Étendre les capacités du code WarpX Partice-In-Cell pour réduire le coût de convergence en utilisant le raffinement du maillage.
Concevoir un injecteur de haute qualité à haute charge pour les accélérateurs laser-plasma.
Déterminer la faisabilité du schéma proposé sur un système laser de classe 100-TW.
Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le calcul intensif et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay.
Nanotubes d'aluminosilicate fonctionnalisés pour la photocatalyse
L'augmentation de la demande en énergie et la nécessité de réduire l’utilisation des combustibles fossiles afin de limiter le réchauffement climatique ont ouvert la voie à un besoin urgent de technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifiques élevées et accessibles, environnements confinés, transport d'électrons sur de longues distances et séparation des charges facilitées) L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Sa particularité ne vient pas de composition chimique (Al, O et Si) mais de sa courbure intrinsèque qui induit une polarisation permanente de la paroi séparant efficacement les charges photo-induites. Plusieurs modifications de ces matériaux sont possibles (couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet de moduler leurs propriétés. Nous avons fait la preuve de concept que cette argile est un nanoréacteur pour des réactions photocatalytiques (production de H2 et réduction du CO2) sous illumination UV. Afin d'obtenir un photocatalyseur utile, il est nécessaire d'étendre la collecte des photons dans le domaine du visible. Une stratégie envisagée consiste à encapsuler et à greffer de façon covalente des colorants servant d'antenne dans la cavité. L'objectif de cette thèse consiste à synthétiser des imogolites avec différentes fonctionnalisations internes, à étudier l'encapsulation et le greffage de colorants dans la cavité de ces imogolites fonctionnalisées et enfin à étudier les propriétés photocatylitques.
Exploration de nanomatériaux à base de diamant pour la (sono)photocatalyse : Applications pour la production d'hydrogène et la réduction du CO2
Les nanodiamants (ND) sont de plus en plus étudiés comme semiconducteurs pour la photocatalyse, notamment grâce aux positions très spécifiques de leurs bandes de valence et de conduction qui peuvent être modulées. Ainsi, il a été récemment démontré que les ND peuvent produire de l’hydrogène sous lumière solaire avec une efficacité similaire à celle des nanoparticules de TiO2. D'autres études montrent également la possibilité de photogénérer des électrons solvatés à partir de certains NDs pour la réduction du CO2 ou la dégradation de polluants tenaces.
Dans l’optique d’accélérer le développement des technologies "solar-to-X" à base de nanodiamants, nous proposons dans le cadre de cette thèse d’intégrer ces derniers en tant que photocatalyseurs dans une approche sonophotocatalytique. En effet, la cavitation acoustique, générée par les ultrasons, peut améliorer le transfert de masse en dispersant les particules catalytiques et permet de produire des espèces réactives additionnelles (radicaux hydroxyles, superoxydes). Elle émet également une sonoluminescence qui peut favoriser la photogénération de charges et devrait limiter la recombinaison des porteurs de charge.
La première phase du travail portera sur la synthèse de photocatalyseurs à base de nanodiamants, en explorant diverses chimies de surface et leur association avec des co-catalyseurs. Des méthodes de synthèse classique et sonochimique seront utilisées, des études préliminaires ayant montré que la sonochimie peut modifier efficacement la chimie de surface des ND. Les propriétés photocatalytiques de ces matériaux seront d'abord évaluées, menant ensuite à la conception d'une cellule sonophotocatalytique . Des études approfondies exploreront les synergies entre sonochimie et photocatalyse pour la production d’hydrogène ou la réduction du CO2. Ce travail de thèse se déroulera dans le cadre d'une collaboration entre le NIMBE situé sur le centre CEA de Saclay et l'ICSM situé sur le centre CEA de Marcoule.
Magnons topologiques dans les matériaux quantiques
La topologie est devenue un paradigme essentiel en matière condensée, permettant de classer les phases de la matière selon des propriétés invariantes sous des déformations continues. Les premières recherches dans ce domaine se sont essentiellement concentrées sur les structures de bandes électroniques, conduisant par exemple à la découverte des « isolants topologiques ». Cependant, ces concepts topologiques ne sont pas restreints seulement aux électrons (fermions) et ainsi, l'application de tels concepts aux bosons, en particulier les magnons, suscite un intérêt croissant. Les magnons, qui sont des excitations collectives dans les matériaux magnétiques, illustrent comment la topologie influence la dynamique magnétique et affecte le transport de chaleur et de spin. Des analogues d'isolants topologiques et de semi-métaux apparaissent dans leurs structures de bandes de magnons. Les magnons offrent ainsi une plateforme pour étudier l'interaction entre symétries magnétiques et topologie, examiner l'effet des interactions sur les bandes topologiques, et générer des courants de spin protégés aux interfaces. La recherche de matériaux contenant des magnons topologiques est donc cruciale, surtout pour les applications en magnonique, qui exploitent les ondes de spin pour le stockage et le traitement rapide des données.
Ce projet de thèse se consacre à explorer ces aspects topologiques dans des matériaux quantiques candidats à l’aide de techniques de diffusion de neutrons et de rayons X dans les grandes infrastructures de recherche (ILL, ESRF, SOLEIL), pour analyser la structure de bande des magnons à la recherche de caractéristiques topologiques, comme les points de Dirac ou de Weyl. Les résultats expérimentaux seront soutenus par des calculs théoriques des bandes magnoniques intégrant des concepts topologiques.
Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie
L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.