Etude et utilisation de verres à l’uranium pour la détection des neutrons par voie optique

Le Laboratoire de Dosimétrie, Capteurs et Instrumentation du CEA/IRESNE Cadarache, développe, fabrique et exploite des détecteurs de flux neutroniques qui sont utilisés à proximité immédiate ou à l’intérieur des cœurs des réacteurs nucléaires. En plus des détecteurs classiques (chambres à fissions, collectrons…), le LDCI mène des recherches actives sur des voies de mesures innovantes telles que des détecteurs optiques, semi-conducteurs, scintillateurs fibrés… Avec cette thèse, le laboratoire souhaite explorer le potentiel de verres dopés à l’Uranium. Ces verres sont connus pour produire une vive fluorescence sous différents rayonnements. L’idée maitresse est d’essayer d’exploiter cette fluorescence pour détecter les réactions de fission qui sont induites dans le verre lorsqu’il est exposé à un flux de neutrons. Cela permettrait de développer une nouvelle génération de détecteurs de neutrons par voie optique à mi-chemin entre une chambre à fission et un scintillateur.
Le travail de thèse sera articulé autour de deux grand axes :
- d’une part la compréhension fine des mécanismes de fluorescence, ainsi que la synthèse de verre à l’uranium aux propriétés optimisés pour nos besoins (sensibilité, spectre d’émission, vecteur isotopique…). La synthèse sera effectuée dans des laboratoires partenaires ;
- d’autre part le développement d’une instrumentation dédiée, probablement sous la forme de fibres optiques, pour tester ces prototypes en réacteur.

Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie

L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.

Miroirs plasmas pour des sources de lumière à des intensités extrêmes et pour des accélérateurs compactes d'électrons

Objectifs de la recherche :
Étendre les capacités du code WarpX Partice-In-Cell pour réduire le coût de convergence en utilisant le raffinement du maillage.
Concevoir un injecteur de haute qualité à haute charge pour les accélérateurs laser-plasma.
Déterminer la faisabilité du schéma proposé sur un système laser de classe 100-TW.

Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le calcul intensif et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay.

Magnons topologiques dans les matériaux quantiques

La topologie est devenue un paradigme essentiel en matière condensée, permettant de classer les phases de la matière selon des propriétés invariantes sous des déformations continues. Les premières recherches dans ce domaine se sont essentiellement concentrées sur les structures de bandes électroniques, conduisant par exemple à la découverte des « isolants topologiques ». Cependant, ces concepts topologiques ne sont pas restreints seulement aux électrons (fermions) et ainsi, l'application de tels concepts aux bosons, en particulier les magnons, suscite un intérêt croissant. Les magnons, qui sont des excitations collectives dans les matériaux magnétiques, illustrent comment la topologie influence la dynamique magnétique et affecte le transport de chaleur et de spin. Des analogues d'isolants topologiques et de semi-métaux apparaissent dans leurs structures de bandes de magnons. Les magnons offrent ainsi une plateforme pour étudier l'interaction entre symétries magnétiques et topologie, examiner l'effet des interactions sur les bandes topologiques, et générer des courants de spin protégés aux interfaces. La recherche de matériaux contenant des magnons topologiques est donc cruciale, surtout pour les applications en magnonique, qui exploitent les ondes de spin pour le stockage et le traitement rapide des données.

Ce projet de thèse se consacre à explorer ces aspects topologiques dans des matériaux quantiques candidats à l’aide de techniques de diffusion de neutrons et de rayons X dans les grandes infrastructures de recherche (ILL, ESRF, SOLEIL), pour analyser la structure de bande des magnons à la recherche de caractéristiques topologiques, comme les points de Dirac ou de Weyl. Les résultats expérimentaux seront soutenus par des calculs théoriques des bandes magnoniques intégrant des concepts topologiques.

Nucléation, Croissance et Propriétés Structurales Multi-Echelle de Nanoparticules Colloïdales d’Oxydes d’Actinides (Pu, U, Th)

Les oxydes nanocristallins possèdent des propriétés physico-chimiques uniques, modulées par leur taille et leur structure locale, les rendant prometteurs pour diverses applications technologiques. Cependant, les nanoparticules d’oxydes d’actinides restent encore peu étudiées, en raison de leur radioactivité et toxicité. Néanmoins, les études qui leur sont consacrées sont grandissantes, motivées par des raisons environnementales ou industrielles, notamment pour leur implication dans les cycles du combustible nucléaire actuels et futurs. Cette thèse cible le plutonium, un élément clé des réacteurs nucléaires. Son comportement en solution est complexe, notamment en raison des réactions d’hydrolyse qui conduisent à la formation de nanoparticules colloïdales de PuO2 extrêmement stables. Bien que ces espèces soient aujourd’hui mieux décrites, les mécanismes conduisant à leur formation restent encore peu explorés.

L'objectif ambitieux de cette thèse est de percer les mécanismes fondamentaux en lien avec la formation de ces nanoparticules en adoptant une approche systématique combinant une large gamme de paramètres expérimentaux. Ceux-ci incluent le milieu de synthèse, la température, la concentration des réactifs, la durée de réaction ou encore l'apport de la sonochimie. L’accent sera mis sur l’étude des étapes de nucléation et de croissance de ces nanoparticules, ainsi que sur leurs propriétés structurales en fonction des conditions physico-chimiques qui influencent leur formation. Des études seront conjointement réalisées à l’ICSM avec les éléments Th, U et Zr en tant qu’analogues et sur l’installation Atalante pour le Pu. Au-delà des techniques usuelles de laboratoire nécessaires à la caractérisation de ces systèmes, des expériences complémentaires seront réalisées sur des lignes synchrotron (SOLEIL et ESRF) afin de caractériser de manière approfondie les propriétés structurales et réactionnelles de ces espèces et de leur précurseur.

Top