Réduction du ferraillage dans les structures en béton armé par calculs non linéaires et optimisations topologique et évolutionnaire

Les armatures en acier jouent un rôle majeur dans le comportement des structures en béton armé. Néanmoins, de forts conservatismes peuvent parfois être imposés par les règles de dimensionnement, questionnant la réalisation de l’ouvrage (faisabilité) ou sa viabilité (économique, environnementale…). C’est dans ce contexte que s’inscrivent les travaux de thèse. En s’appuyant sur des développements récents, ils viseront à proposer une approche de conception innovante, s’appuyant sur l’utilisation de calculs éléments finis non linéaires, en les associant à des algorithmes d’optimisation topologique (définition des directions de renforcement et des sections d’armatures) et évolutionnaire (positionnement des barres à section d’armatures fixées). La méthode devra permettre par un processus itératif d’aboutir à des solutions répondant à un optimal de conception. Au regard des objectifs à minimiser (qui pourront être contradictoires – coût, faisabilité, résistance, empreinte carbone…), elle orientera ainsi l’état des paramètres d’entrée à partir d’une analyse des sorties d’intérêt. L’application à des cas d’usage complexes, issus de la pratique (jonction poteaux-poutres par exemple) démontrera la pertinence de l’approche, par rapport à des méthodes de dimensionnement plus conventionnelles. Au terme de la thèse, le doctorant aura développé des compétences dans l’utilisation et le développement d’outils à l’état de l’art, allant de la simulation par éléments finis non linéaire jusqu’aux méthodes modernes d’optimisation par intelligence artificielle.

Interaction fluide-structure dans un réseau de solides élancés en milieu confiné

Dans le cadre de l’étude des déformations progressives des assemblages combustibles au sein des cœurs de REP, le CEA a développé deux outils de simulation. Le premier, Phorcys [1], permet de calculer l’écoulement du caloporteur dans et autour des assemblages légèrement déformés à l’aide d’un réseau de pertes de charges paramétriques, puis d’en déduire les forces fluides qui s’appliquent sur les structures. Le second, DACC [2], traite le comportement thermomécanique sous irradiation et l’interaction des assemblages entre eux lors des cycles de puissance, au travers d’une simulation éléments finis. L’interaction fluide-structure est enfin traitée grâce au couplage numérique de ces deux outils, au sein duquel des incertitudes peuvent être propagées et analysées [3].
Le programme de relance du nucléaire (SMR, réacteurs de 4ème génération, PN etc.) est pourvoyeur de nouvelles technologies ainsi que de nouvelles topologies de cœur et d’assemblages combustibles qu’il convient de pouvoir analyser sous l’angle des risques associés aux déformations quasi-statiques des assemblages en cœur. Dans un double souci de capitalisation et d’extension des possibilités de simulation, on souhaite rendre ces deux outils capables de traiter les écoulements et les déformations de structures élancées de manière plus générique afin de couvrir efficacement et rapidement un large panel de technologies nucléaires.
Pour ce faire, il conviendra d’identifier, classifier, puis modéliser de manière réduite, quoique prédictive, les principales structures d’écoulement qui peuvent avoir cours au sein d’un volume fluide encombré de structures élancées à forte surface d’échange. Le modèle hydraulique complet du cœur sera ainsi créé par concaténation de modèles élémentaires respectant des conditions strictes d’interfaçage. Une méthode d’analyse de l’écoulement global obtenu permettra alors la quantification du champ de force contribuant aux déformations. Une logique similaire de classification et de changement d’échelle serait également mise en œuvre en ce qui concerne l’évaluation des déformations réversibles et irréversibles d’une structure élancée, soumises à des efforts extérieurs et à des irradiations sévères. Une difficulté est que la topologie fine d’un assemblage combustible peut présenter des non-linéarités aux petites échelles qui se propagent en partie à l’échelle macroscopique. In fine, on devra mettre en œuvre un couplage partitionné, robuste et à coût maîtrisé, entre l’écoulement du caloporteur et ces structures individuelles, qui se déforment et interagissent dans un environnement contraint.
Le cadre de modélisation ainsi construit permettra d’étudier les déformations progressives d’assemblages et les risques associés pour un spectre large de technologies de réacteurs nucléaires.

Interaction fluide-structure dans des mélanges : théorie, simulations numériques et expériences

Ce projet de doctorat s’inscrit dans le cadre de la recherche sur les interactions fluide-structure (IFS) dans des milieux complexes, notamment des mélanges fluides comportant plusieurs phases (liquide/liquide ou liquide/gaz) et/ou des particules en suspension. L’objectif est de développer une compréhension approfondie et multi-échelle des mécanismes couplés entre structures déformables (gouttes, interfaces, parois souples) et écoulements de mélanges complexes, en combinant modélisation théorique, simulations numériques avancées, et confrontation aux données expérimentales.

Etude des processus diffusionnels de l’oxygène et de l’hydrogène dans les couches d’oxyde pré- et post-transitoires formées sur les alliages de zirconium

Les mécanismes de corrosion des alliages de zirconium dans les réacteurs à eau pressurisée font encore débat plus d’un demi-siècle après les premières recherches sur ce matériau. La littérature fait en effet état de deux mécanismes distincts de transport des espèces diffusantes dans les couches d’oxyde : l'un en faveur de la diffusion moléculaire de l’oxygène et de l’hydrogène à travers des canaux de nanopores interconnectés pendant le régime pré-transitoire, et l'autre plus favorable à la diffusion via des court-circuits (joints de grains...) de l'hydrogène quel que soit son état dans la couche d'oxyde. Dans ce dernier cas, la couche d'oxyde est considérée comme relativement homogène et imperméable au milieu oxydant, en l’occurrence l’eau du circuit primaire. En revanche, la première interprétation part du principe de l’existence d'une couche perméable au milieu en raison d’un réseau interconnecté de nanopores et ce même au cours du régime pré-transitoire, la densité des nanopores percolés augmentant avec le temps.
Comment, techniquement parlant, trancher entre ces deux interprétations divergentes en termes de mécanisme de diffusion menant, par conséquent, à des solutions de protection contre la dégradation différentes ? Quel est finalement le mécanisme réactionnel menant à l’hydruration des alliages de Zr et son oxydation ?
Pour répondre à cet enjeu, nous explorerons les processus diffusionnels en étudiant les vitesses de dissociation-recombinaison des espèces moléculaires à différentes températures dans des mélanges gazeux équi-isotopiques tels que H2/D2, 18O2/16O2, H218O/D216O, H218O/D2 etc à l’aide d’un dispositif expérimental muni d’un spectromètre de masse qui suit en temps réel les espèces moléculaires d’intérêt.

Développement et calibration d’un modèle à champ de phase hyperbolique pour la simulation explicite de la rupture dynamique

La simulation numérique du comportement mécanique des structures soumises à des sollicitations dynamiques représente un défi majeur pour la conception et l’évaluation de la sûreté des systèmes industriels. Dans le domaine du nucléaire, cette problématique est particulièrement critique pour l’analyse des scénarios d’accidents graves dans les Réacteurs à Eau Pressurisée (REP), tels que l’Accident de Perte de Réfrigérant Primaire (APRP), au cours duquel la dépressurisation rapide du circuit primaire peut conduire à la rupture de tuyauteries. Le développement de modèles physiquement représentatifs, associés à des méthodes numériques robustes et efficaces permettant de simuler ces phénomènes avec une grande fidélité, demeure un sujet de recherche actif.

Parmi les approches non-locales existantes, les méthodes à champ de phase se sont imposées comme un cadre particulièrement intéressant pour la simulation de l’initiation et de la propagation des fissures. Cependant, la majorité des études actuelles se limite à des régimes quasi-statiques ou faiblement dynamiques, pour lesquels les effets de propagation d’ondes peuvent être négligés. À l’inverse, les régimes dynamiques - typiques des sollicitations accidentelles - nécessitent l’utilisation de schémas d’intégration temporelle explicites pour les équations mécaniques qui sont sensibles aux conditions de stabilité. Par conséquence, la formulation elliptique classique des équations d’évolution de l’endommagement n'est pas adaptée à ce contexte. Pour pallier ces limitations, des formulations hyperboliques du champ de phase ont récemment été proposées et évaluées, sachant qu'elles sont nativement plus compatibles avec les approches dynamiques explicites et qu'elles permettent un meilleur contrôle de la cinématique de propagation des fissures.

L’objectif de cette thèse est de faire progresser cette stratégie de modélisation émergente selon trois axes principaux:
- Étendre le cadre théorique de la formulation hyperbolique du champ de phase pour l’endommagement dans le contexte des matériaux standards généralisés, ce cadre étant adapté pour la rupture ductile;
- Proposer des solutions pour juguler l’impact négatif de l’évolution de l’endommagement sur le pas de temps critique;
- S’appuyer sur une campagne d’essais de fracturation dynamique afin de calibrer les simulations, en mettant l’accent sur l’identification des paramètres liés à l’endommagement.

Ce travail de recherche sera mené en collaboration entre le CEA Paris-Saclay, l’ONERA Lille et Sorbonne Université, avec le CEA comme établissement principal d’accueil.

Rupture ductile sous chargement oligocyclique des matériaux irradiés : Caractérisation expérimentale, modélisation et simulation numérique

Les alliages métalliques utilisés dans les applications industrielles ont le plus souvent un mode de rupture ductile par germination, croissance et coalescence de cavités internes. Les cavités apparaissent du fait de la rupture d’inclusions, croissent sous l’effet du chargement mécanique jusqu’à se rejoindre, conduisant à la ruine de la structure. La résistance à l’amorçage et à la propagation de fissure résulte de ce mécanisme. La prédiction de la ténacité passe donc par la
modélisation de la plasticité des matériaux poreux. Le comportement de matériaux poreux a été très étudié tant d’un point de vue expérimental que théorique et numérique dans le cas de chargement mécanique monotone en grandes déformations, conduisant à des lois de comportement permettant de simuler la rupture ductile de structure. Le cas des chargements mécaniques cycliques à faible nombre de cycles et / ou impliquant de faibles niveaux de déformations a comparativement été peu étudié, alors même que ce type de chargement est d’intérêt dans les applications industrielles, par exemple dans le cas de séisme. Dans cette thèse, l’effet de chargements oligocycliques sur les propriétés de rupture ductile sera investigué de manière systématique d’un point de vue expérimental, théorique et numérique. Des campagnes d’essais seront réalisées sur différents matériaux utilisés dans les applications nucléaires et pour différentes conditions de sollicitations mécaniques afin de quantifier l’effet des chargements oligocycliques sur la déformation à rupture et
la ténacité. En parallèle, des simulations numériques seront effectuées afin d’obtenir une base de données étendue concernant le comportement plastique de matériaux poreux sous chargement cyclique en s’intéressant en particulier aux effets de l’élasticité, de la porosité, du chargement mécanique et de distribution spatiale de cavités. Ces simulations numériques seront utilisées pour valider des modèles analytiques développés au cours de la thèse visant à prédire l’évolution de la porosité et la contrainte d’écoulement. Enfin, les modèles seront implémentés sous la forme de lois
de comportement et utilisés pour simuler les essais expérimentaux.

Modélisation de frottement interfacial en géométrie grappe dans le code de thermo hydraulique système CATHARE

Le code système de thermo-hydraulique CATHARE, développé au CEA en partenariat avec EDF, Framatome et l’ASNR, est un code permettant de simuler les comportements normaux et accidentels du circuit hydraulique d’un Réacteur à Eau Pressurisée (REP). Il est aujourd’hui une référence en France en matière de simulation des transitoires dans les réacteurs nucléaires, et est notamment un composant central dans les rapports de sûreté produits par EDF et Framatome.
Des études précédentes montrent le besoin d’améliorer la validité du modèle de frottement interfacial en coeur à basse pression ou à grand diamètre hydraulique. De plus, le modèle actuel de frottement interfacial en coeur repose sur de nombreuses simplifications et sur une calibration effectuée sur un nombre restreint de données expérimentales pour des écoulements eau-vapeur à haute température. L’émergence de nouvelles modélisations dans la littérature et la disponibilité de nouvelles données expérimentales pourraient permettre une complexification du modèle et une calibration sur une plus grande base de données.
Cette thèse a donc pour objectif d’améliorer le modèle de frottement interfacial en géométrie grappe en investiguant les phénomènes physiques associés à cette problématique. Ce travail permettra d’implémenter à la suite de la thèse un modèle plus complet dans le code CATHARE et donc d’élargir les conditions de validité du code à de nouvelles applications.

Modélisation de l’impact de défauts dans les structures acier-béton. Identification des défauts critiques par méta-modélisation et algorithmes d’optimisation.

Pour faire face à des enjeux de constructibilité grandissant, les structures « acier-béton » (structures « steel – concrete » ou « SC ») deviennent une alternative prometteuse face aux structures classiques en béton armé. Ces éléments sont constitués d’un béton de remplissage, de deux plaques externes métalliques et de goujons en acier permettant d’assurer l’action composite. Si ces structures présentent un intérêt certain lié à leur comportement mécanique d’ensemble, la présence des plaques métalliques empêche un contrôle visuel de la qualité du bétonnage. Il apparaît donc essentiel de caractériser l’impact de défauts potentiels. C’est dans ce contexte que s’inscrit le sujet de thèse. Il s’agira, en s’appuyant sur des résultats récents du laboratoire, de proposer une démarche numérique de prise en compte des défauts dans les structures acier-béton. Le travail de thèse s’articulera en plusieurs étapes : validation d’une stratégie de modélisation du comportement mécanique de structures acier-béton sans défaut, introduction de défauts dans la simulation et évaluation de l’applicabilité de la stratégie numérique, construction d’un métamodèle et analyse de sensibilité et définition de la (ou des) configuration(s) de défauts critiques par algorithmes d’optimisation. L’un des objectifs opérationnels de la thèse est de disposer d’un outil permettant de déterminer les configurations de défauts critiques (taille, position et nombre) en lien avec un objectif fixé sur une quantité d’intérêt donnée (perte de résistance ou de rigidité moyenne par exemple). Ce travail s’appuiera donc sur l’utilisation et le développement d’outils numériques à l’état de l’art, dans les domaines de la modélisation par éléments finis, des techniques d’optimisation, d’analyse de sensibilité et d’optimisation. La thèse sera réalisée dans un cadre collaboratif riche, notamment en partenariat avec EDF.

Effets des hétérogénéités structurales sur les écoulements d’air à travers une paroi en béton armé

Le bâtiment réacteur représente la troisième barrière de confinement dans les centrales nucléaires. Il a pour rôle de protéger l’environnement en cas d’accident hypothétique en limitant les rejets vers l’extérieur. Sa fonction est donc étroitement liée à son étanchéité. Classiquement, l’estimation du taux de fuite s’appuie sur une bonne connaissance des propriétés de transfert (comme la perméabilité) associée à une démarche de simulation chaînée (thermo-)hygro-mécanique. Si le comportement mécanique de la structure est aujourd’hui globalement maîtrisé, des progrès restent nécessaires dans la compréhension et la quantification des écoulements. C’est particulièrement le cas en présence d’hétérogénéités (fissures, nid de cailloux, reprise, armatures, câbles, etc.) qui représentent autant de situations pouvant perturber localement la perméabilité. C’est dans ce cadre que se place le sujet de thèse.
Il s’agira, en s’appuyant sur une démarche combinant essais expérimentaux et simulation, d’améliorer la représentation des écoulements en prenant en compte l’effet des hétérogénéités. Une première analyse permettra de définir un plan d’expérience qui sera ensuite mis en œuvre. Les résultats seront analysés afin de caractériser empiriquement l’influence de chaque type d’hétérogénéités testé sur les propriétés de transfert. Une approche de simulation, exploitant les résultats expérimentaux, sera ensuite développée, s’appuyant la méthode des éléments finis et discrets. Enfin, l’applicabilité de la méthode à une structure réelle sera étudiée, en rendant compte des incertitudes concernant la présence et l’impact de ces hétérogénéités (approche probabiliste).
La thèse s’appuie donc sur des outils et des méthodes expérimentaux et numériques à l’état de l’art et sera réalisée dans un contexte collaboratif riche (CEA, ASNR, EDF).

Simulation de l’écoulement dans les extracteurs centrifuges : l’impact des solvants visqueux sur le fonctionnement

Dans la cadre du retraitement du combustible nucléaire usé, le CEA a codéveloppé avec ROUSSELET-ROBATEL des appareils d’extraction liquide/liquide (ELL) visant à mettre en contact deux liquides immiscibles parmi lesquels l’un contient les métaux valorisables à récupérer et l’autre une molécule extractante. L’Extracteur Centrifuge multi-étage est l’un des appareils qui permettent de faire de l’ELL à l’usine de la Hague. L’utilisation future de solvants potentiellement plus visqueux que les standards industriels actuels peut poser des problèmes de performance qu’il est important d’étudier au préalable en laboratoire afin d’apporter les préconisations nécessaires au recouvrement des performances attendues par l’usine. L’environnement nucléaire dans lequel sont exploités ces appareils rend l’étude in situ quasi-impossible et prive donc la R&D de précieuses informations pourtant nécessaires à une compréhension approfondie des mécanismes physico-chimiques au cœurs des problématiques en jeu. Pour répondre à cela, l’étude proposée va reposer sur une approche numérique qui aura au préalable été validée par comparaison soit avec des données expérimentales historiques soit avec des acquisitions issues des pilotes ad hoc plus récents. Ainsi à l’issue d’une phase de bibliographie et de capitalisation des mesures récentes, il est proposé dans un premier temps de créer des cas-test qui vont servir à valider le modèle numérique. Sur la base de cette validation et à la lumière des connaissances acquises sur les thèses précédentes concernant l’effet de la viscosité sur les écoulements, il est proposé d’explorer numériquement l’impact d’une élévation de viscosité des solvants sur les extracteurs centrifuges. Cela ouvrira la voie à une meilleure compréhension du fonctionnement des appareils ainsi qu’à des améliorations de nature opératoires ou géométriques. L’étudiant évoluera au CEA Marcoule, dans un environnement de recherche à la croisée entre une équipe d’expérimentateurs et une équipe de simulations numériques. Cette expérience lui permettra d’acquérir d’importantes compétences en modélisation des écoulements liquide-liquide ainsi que de solides connaissances sur le développement de contacteurs liquide-liquide.

Top