Étude multi-échelle du transport ionique dans des matériaux nanoporeux hiérarchiques non saturés : application aux matériaux cimentaires

Le transport ionique est crucial pour déterminer la durabilité des matériaux à base de ciment et, par conséquent, l'extension de la durée de vie des (infra)structures en béton. Les phénomènes de transport déterminent la capacité de confinement du béton, essentielle à la conception et à la gestion des infrastructures en béton pour la production d'énergie. Dans la plupart des conditions de service, le béton se trouve dans un état non saturé. Un transport anormal a été observé dans les matériaux à base de ciment, et les raisons de ces écarts par rapport au comportement attendu d'autres matériaux poreux peuvent provenir de processus à l'échelle nanométrique.

A ce jour, la majorité des modélisations prédictives de la durabilité ne tiennent pas explicitement compte des processus à l’échelle nanométrique, pourtant fondamentaux pour déterminer les propriétés de transport. Des progrès récents ont été réalisés dans la quantification du comportement de l'eau confinée dans diverses phases présentes dans les systèmes cimentaires. Les silicates de calcium hydratés (C-S-H) sont la principale phase hydratée dans les matériaux à base de ciment et présentent des nanopores dans les gammes microporeuses et mésoporeuses. Cependant, les effets de la désaturation restent encore à élucider pleinement. Une compréhension fondamentale des processus de transport nécessite un cadre multi-échelle dans lequel l'information de l'échelle moléculaire se répercute à travers d'autres échelles pertinentes (en particulier, l'échelle mésoscopique associée à la porosité du gel C-S-H (~nm), la porosité capillaire et la zone de transition interfaciale (~µm) jusqu'à l'échelle macroscopique des applications industrielles dans les matériaux à base de ciment).

L’objectif de ce travail de doctorat est d’évaluer le transport ionique des chlorures, une espèce critique pour la durabilité du béton, en conditions non saturées en combinant des simulations à petite échelle, une modélisation multi-échelle et des expérimentations dans une approche ascendante. Le travail se concentrera sur le C-S-H. Le projet vise à caractériser les effets de la désaturation sur les processus nanométriques qui gouvernent le transport des chlorures.

Conception et optimisation d'un concept innovant de couverture tritigène pour réacteur à fusion nucléaire compact à haut flux de chaleur

Compétences :
Techniques : thermique, mécanique des structures, hydraulique, matériaux, simulation numérique
Non technique : rédaction, relationnel, anglais

Prérequis :
Cette thèse sera précédée d’un stage de 6 mois. Contacter l’encadrant pour découvrir le sujet.

Contexte :
Cette thèse porte sur la conception et l'optimisation d'une couverture tritigène innovante pour les réacteurs de fusion nucléaire compacts. La fusion nucléaire offre une solution prometteuse pour produire une énergie propre et durable. Cependant, elle nécessite la production continue de tritium, un isotope rare, à partir de couvertures tritigènes entourant le plasma. Ces couvertures doivent également extraire la chaleur générée. Dans les réacteurs compacts, les contraintes techniques sont accrues par des flux de chaleur et des sollicitations thermiques et neutroniques très élevés.

La thèse se déroulera au sein du Bureau de Conceptions, Calculs et Réalisations du CEA Saclay, un acteur reconnu concernant le développement de couvertures tritigènes à l’échelle européenne. Ce bureau a conçu plusieurs concepts, tels que le HCLL (Helium Cooled Lithium Lead) et le BCMS (Breeder and Coolant Molten Salt), deux types de couvertures basées sur des systèmes de refroidissement à l'hélium ou aux sels fondus.

Description de la thèse :
Le programme de recherche se déroulera sur trois ans. La première année sera dédiée à l'étude des couvertures existantes, à l'identification des contraintes des réacteurs compacts, à la sélection de matériaux et fluides caloporteurs adaptés, et à la conception préliminaire du modèle. Les années suivantes seront consacrées à la modélisation multiphysique (thermique, mécanique, neutronique), suivie de l'optimisation itérative du concept pour améliorer ses performances.

Perspectives :
Les résultats de cette thèse auront un impact significatif sur le développement des réacteurs de fusion compacts, en garantissant la production de tritium et l’intégrité des structures. Ce travail pourrait également ouvrir des perspectives pour des recherches futures sur des couvertures tritigènes encore plus avancées, contribuant à l'essor d'une énergie de fusion durable et commercialement viable.

Analyse sismique de l’interface sol-fondation : Modélisation physique et numérique du basculement global et du décollement local

Les fondations basculantes offrent un mécanisme potentiel pour améliorer la performance sismique en permettant un soulèvement et un tassement contrôlés, mais les incertitudes dans les interactions sol-fondation limitent leur utilisation généralisée. Les modèles actuels nécessitent des simulations numériques complexes, qui ne représentent pas de manière précise l'interface sol-fondation.
L'objectif principal de cette thèse est de modéliser la transition des effets locaux (friction, soulèvement) à la réponse globale de la structure (basculement, tassement et glissement) sous des charges sismiques, en utilisant une approche expérimentale et numérique combinée. Il s'agit donc d'assurer une modélisation numérique fiable des structures basculantes. Les objectifs clés incluent :
• Étudier la sensibilité des paramètres physiques dans la réponse sismique des systèmes sol-structure basculants en utilisant l'apprentissage automatique et des analyses numériques.
• Développer et réaliser des tests expérimentaux sous charges monotones puis dynamiques pour mesurer les réponses sol-fondation-structure en condition de basculement.
• Implémenter des simulations numériques pour tenir compte des effets d'interaction locaux et valider les résultats avec des résultats expérimentaux.
Enfin, cette recherche vise à proposer un cadre expérimental et numérique fiable pour améliorer la résilience sismique dans la conception en ingénierie. Cette thèse fournira à l'étudiant des compétences pratiques en ingénierie, ainsi qu'une expertise dans les tests en laboratoire et la modélisation numérique. Les résultats seront publiés dans des revues internationales et nationales et présentés lors de conférences, faisant avancer la recherche dans le domaine de la dynamique des sols et des structures.

Etude thermodynamique du ternaire K2CO3-CO2-H2O pour le développement de procédés NET (Negative Emission technologie) et SAF (Sustainable Air Fuel)

Cette thèse s'inscrit dans le cadre de la thématique accélérée Inter-conversion énergétique : de l’atome et du photon à l’hydrogène et aux molécules durables.
La bioénergie avec captage et stockage du carbone (BECCS) utilise l'énergie de la biomasse tout en captant le dioxyde de carbone libéré par le processus, ce qui se traduit par des émissions négatives dans l'atmosphère (Negative Emission Technologie). Le procédé de référence en Europe utilise le carbonate de potassium [1] mais désorbe le CO2 à pression atmosphérique, alors que sa séquestration ou son hydrogenation en molécules durables, notamment les SAF (Sustainable AirFuel) nécessite de fortes pressions.
La thèse consiste en l’acquisition de nouvelles données thermodynamiques et thermo-chimiques à haute température/pression nécessaires à l'optimisation énergétique d’un tel procédé [2] et à leur intégration dans une modélisation thermodynamique.
On fera par la suite un remontage du procédé global afin de pouvoir quantifier le gain énergétique et environnemental attendu.
La thèse se déroulera au sein du Laboratoire de modélisation thermodynamique et thermochimie (LM2T) en collaboration avec le LC2R (DRMP/SPC) pour la partie expérimentale.

Références :
[1]K. Gustafsson, R. Sadegh-Vaziri, S. Grönkvist, F. Levihn et C. Sundberg, «BECCS with combined heat and power: assessing the energy penalty,» Int. J. Greenhouse Gas Control, vol. 110, p. 103434, 2021.
[2] S. Zhang, X. Ye et Y. Lu, «Development of a Potassium Carbonate-based Absorption Process with Crystallization-enabled High-pressure Stripping for CO2 Capture: Vapor–liquid Equilibrium Behavior and CO2 Stripping Performance of Carbonate/Bicarbonate,» Energy Procedia, 2014

Analyse expérimentale et numérique des interactions fluide-structure dans la propagation des ondes de raréfaction à travers des structures complexes des réacteurs à eau pressurisée

L'accident de perte de réfrigérant primaire (APRP) dans les réacteurs à eau pressurisée (REP) entraîne des phénomènes transitoires rapides, tels que la propagation d'ondes de raréfaction dans les structures internes du réacteur. Ces ondes provoquent des charges de pression transitoires entre différentes zones, comme le cœur du réacteur et la zone de by-pass, ce qui exerce des contraintes sur le cloisonnement. La déformation de cette structure critique peut compromettre l'intégrité structurelle du réacteur et compliquer la manipulation des assemblages de combustible, notamment leur retrait après l'accident.

Le principal objectif scientifique est de développer, implémenter et valider de nouveaux modèles numériques permettant de simuler de manière plus précise la propagation des ondes de raréfaction à travers des obstacles complexes. L’état de l’art actuel repose sur des modèles simplifiés, validés uniquement pour des configurations simples comme les plaques à simple orifice (diaphragmes). Cependant, il existe un besoin d’élargir ces modèles à des géométries plus complexes, telles que les plaques à trous multiples, en utilisant différents méthodes numériques.
L’élaboration d’un modèle de porosité pour représenter les assemblages combustibles est également cruciale. Les résultats attendus seront validés expérimentalement et ont des applications directes pour les partenaires industriels EDF et Framatome, renforçant l'intérêt industriel de cette recherche.

La thèse adoptera une approche combinée, à la fois expérimentale et numérique. L’utilisation de la plateforme MADMAX permettra de tester différents obstacles complexes et de recueillir des données expérimentales détaillées grâce à des capteurs spécialisés. Ces données serviront à valider les modèles numériques développés dans le logiciel EUROPLEXUS. De plus, les simulations incluront des approches novatrices telles que un nouveau modèle de porosité pour les structures internes des réacteurs. La participation à des conférences internationales et la publication des résultats sont prévues pour assurer la diffusion scientifique des avancées.

La thèse se déroulera au laboratoire DYN du CEA Paris-Saclay, qui dispose d’équipements expérimentaux uniques, comme la plateforme MADMAX, et d’une forte expertise en modélisation numérique. Plusieurs collaborations industrielles (EDF, Framatome) et académiques offriront un environnement riche pour le doctorant, avec des échanges réguliers au sein de réseaux internationaux.

Le candidat idéal devra avoir de solides compétences en mécanique des fluides, dynamique des structures, modélisation numérique (éléments finis, volumes finis), et en programmation. Une première expérience avec des outils comme EUROPLEXUS sera un plus. Un stage de M2 pourra être proposé pour familiariser le candidat avec les méthodes et outils utilisés dans cette thèse.

Cette thèse permettra au doctorant d’acquérir des compétences hautement spécialisées en interactions fluide-structure, modélisation numérique et expérimentation dans un contexte industriel. Ces compétences sont très recherchées dans les secteurs de l’énergie, de l’aéronautique et des technologies de simulation avancée, ouvrant la voie à des carrières dans la recherche appliquée ou l’ingénierie dans l’industrie.

Modélisation et Validation expérimentale d’un réacteur catalytique et optimisation du procédé pour la production de e-Biocarburants

Les procédés « Biomass-to-liquid » visant une gazéification de biomasse en syngaz (mélange mélange CO+CO2+H2) puis une transformation de ce syngaz par une synthèse Fischer-Tropsch visant la production de différents carburants (kérosène, diesel, gasoil marin) connaissent un essor ces 20 dernières années. Plusieurs démonstrateurs ont été développés, notamment en Europe. Cependant, le trop faible ratio H/C du syngaz résultant de la gazéification nécessite une recirculation voire le rejet du CO2 en sortie du procédé ce qui complexifie les séparations et a un impact négatif sur la valorisation du carbone biosourcé.
Récemment, la possibilité d’effectuer, au sein d’un même réacteur catalytique, la réaction de Reverse Water Gas Shift (RWGS) et la réaction de Fischer-Tropsch (FT) à l’aide de catalyseurs à base de fer et de différents promoteurs a été démontrée (Riedel, 1999) et reproduite dans le cadre de plusieurs thèses CEA/CP2M (Panzone, 2019 ). Elle ouvre de nouveaux potentiels pour valoriser au mieux l’ensemble du contenu carboné de la biomasse à condition de compléter le syngaz par un apport d’hydrogène issu d’électricité renouvelable.
L’objectif de la thèse se concentre sur l’hydrogénation directe d’un mélange CO/CO2 en hydrocarbures qui consiste à enchainer au sein du même réacteur les reactions de RWGS et la synthèse Fischer-Tropsch . Il s’agit de modéliser cette synthèse catalytique dans un réacteur à lit fixe dans des conditions représentatives d’un procédé industriel de PBtL afin d’en optimizer le fonctionnement.

Etude et simulation des entraînements de phase dans les batteries de mélangeurs-décanteurs

Dans le cadre du développement de nouveaux procédés de séparation par extraction liquide-liquide, des essais expérimentaux sont mis en œuvre afin de démontrer la récupération des éléments valorisables suffisamment décontaminés des impuretés. Ces essais sont couramment réalisés en batteries de mélangeurs décanteurs. Cependant, en fonction des conditions opératoires, ces produits finis peuvent être contaminés par des impuretés. Cette contamination résulte de la combinaison de plusieurs facteurs :
-Hydrodynamique : Entrainement dans le solvant de gouttes aqueuses non décantées contenant des impuretés
-Chimique : le facteur de séparation des impuretés est faible (inférieur à 10-3)
-Procédé : l’entrainement des gouttes est amplifié avec l’augmentation de la cadence (réduction du temps de séjour des gouttes)
Cette thèse a pour but d’accroitre la compréhension des différents phénomènes responsables de ces entraînements de phase afin d’estimer des paramètres opératoires optimaux et de garantir une contamination des produits finis inférieure à un seuil fixé.
Il sera question de mettre au point un modèle macroscopique permettant de prédire le débit d’entrainement de gouttes non décantées en fonction des conditions opératoires dans les batteries de mélangeurs décanteurs. Il devra s’appuyer sur des simulations hydrodynamiques couplant la résolution d’un bilan de population de gouttes à un écoulement de phase continue. Un couplage sera réalisé entre ce modèle hydrodynamique et le code PAREX ou PAREX+ permettant de dimensionner les schémas de procédé.
La qualification des modèles proposés devra être faite par des comparaisons à des mesures expérimentales (basées sur des compagnes d’essai antérieures ou à venir).

Méthodologie de déploiement d'une flotte de réacteurs nucléaires innovants pilotée par les besoins et contraintes du réseau

Les réseaux électriques sont à une société ce que le système sanguin est au corps humain : les pourvoyeurs d’énergie électrique indispensable à la vie quotidienne de tous les organes de la société. Il s’agit de systèmes très complexes qui doivent garantir à tout instant l’équilibre entre la demande des consommateurs et la puissance injectée sur ses lignes via des mécanismes à des échelles spatiales et temporelles différentes.

Cette thèse vise à élaborer une méthodologie d’optimisation du déploiement de réacteurs nucléaires innovants dans des réseaux électriques, adaptée aux besoins et contraintes spécifiques de ceux-ci. Cette approche devra être applicable à une grande variété de réseaux, qu'ils soient insulaires ou de taille continentale, et à divers niveaux de pénétration et technologies d’Energies Renouvelables Intermittentes (EnRI). Les contraintes des réseaux devront traduire leurs besoins en stabilité à court terme (localisation et capacités des réserves inertielles, participation aux services systèmes), à moyen terme (pilotabilité et suivi de charge), ainsi qu’à long terme (disponibilité saisonnière et facteur de charge des moyens de production). Les réacteurs nucléaires innovants pourront appartenir à n’importe quelle filière, étant caractérisés uniquement par des grandeurs macroscopiques telles que la cinétique de montée/descente en charge, les paliers de puissance partielle, la durée avant redémarrage, les capacités de cogénération, etc. ainsi que des données technico-économiques requises pour le dispatching. Concrètement, l’objectif est de pouvoir dresser le portrait-robot (ie. localisation, puissance, cinétique) de flottes de réacteurs nucléaires garantissant un fonctionnement stabilisé des réseaux électriques malgré un fort taux de pénétration d’EnRI. Deux contributions principales sont attendues :
- Apport académique : proposer une méthodologie novatrice pour optimiser le déploiement de systèmes énergétiques de grande dimension comprenant des réacteurs nucléaires innovants, en intégrant à la fois la physique des réseaux électriques et leurs contraintes opérationnelles ;
- Apport industriel : développer des recommandations pour le déploiement optimal de réacteurs nucléaires innovants dans des systèmes électriques intégrant des EnRI, prenant en compte des aspects comme la puissance des réacteurs et leur inertie, leur localisation, les besoins en réserves pour les services systèmes, leur capacité de suivi de charge ou leur disponibilité.

Le doctorant sera basé dans une unité de recherche sur les systèmes nucléaires innovants. À l'intersection de l’étude de la dynamique des réacteurs nucléaires, de la physique des réseaux électriques, et de l'optimisation, cette thèse en énergétique offrira au doctorant l'opportunité de développer une connaissance approfondie sur les systèmes énergétiques de demain et les enjeux qui leur sont associés.

Modélisation des équilibres de complexation des actinides en milieu nitrique. Application au procédé PUREX

Le code de calcul PAREX+ est un outil majeur dans le domaine de la chimie séparative. Il permet la modélisation et la simulation des procédés de séparation basés sur l’extraction par solvant. Dans ce code, la distribution des espèces d’intérêt entre les phases aqueuse et organique est calculée en tout point du procédé aussi bien en régime établi que dynamique. L’objectif de la thèse est d’améliorer le modèle de distribution présent au sein de ce code. Pour cela une meilleure compréhension des phénomènes mis en jeu au sein des phases organiques et aqueuses est nécessaire ainsi qu’une nouvelle approche pour les prendre en compte dans le modèle. Cette thèse associe donc l’expérimental et la modélisation. L’étudiant intégrera une équipe d’encadrement composée d’experts en chimie séparative et en modélisation. Son travail sera valorisé par l’émission de publications et de participations à des congrès internationaux. A l’issue de cette thèse, l’étudiant aura de solides connaissances dans le domaine de l’extraction par solvant et de sa modélisation qu’il pourra valoriser auprès des industriels ou des organismes de recherche du nucléaire ou dans les autres domaines de la chimie séparative (séparation des terres rares ou hydrométallurgie).

Caractérisation de la fuite gazeuse d’un contact rugueux au chargement et au délestage, application au cas des joints d’étanchéité métalliques

Dans de nombreuses infrastructures industrielles, des joints entièrement métalliques sont utilisés pour garantir une haute étanchéité des assemblages mécaniques en conditions thermodynamiques sévères. Leur performance est entièrement contrôlée par le comportement à l’interface de contact entre les surfaces rugueuses du joint et de la bride en vis-à-vis, assimilable à une fracture multi-échelles anisotrope. L'objectif de la thèse est alors de mieux comprendre et prédire les mécanismes d’obtention et de perte d'étanchéité des gaz en fracture rugueuse par une approche de modélisation couplée à de l’expérimentation.

Le travail se réalise dans la continuité d’études connexes déjà réalisées au laboratoire. Il se concentrera d’abord sur la mise au point d’un dispositif expérimental permettant la mise en contact de surfaces rugueuses métalliques avec un effort donné et la mesure conjointe de la fuite, au chargement du contact comme au délestage, afin de mettre en évidence et caractériser le phénomène d’hystérésis apporté par le déformation permanente de la matière au cours de la première compression. Les résultats obtenus seront comparés aux modèles numériques du laboratoire dans différentes configurations, afin de valider ces derniers. S’il apparaît que le calcul d’écoulement est bien maîtrisé, des écarts persistent dans le modèle de contact mécanique. Il devra alors être amélioré en termes de prise en compte des effets de plasticité propres au contact, de l’épaisseur finie du revêtement d’étanchéité et l’optimisation du temps de calcul. Les résultats seront ensuite transposés à un cas industriel de joint d’étanchéité HELICOFLEX, en développant une stratégie de modélisation à deux échelles, couplant l’information macroscopique à l’échelle du joint avec celle à l’échelle des rugosités.

Top