Transition implicite/explicite pour la simulation numérique de problèmes d’Interaction Fluide Structure traités par des techniques de frontières immergées
Dans de nombreux secteurs de l’industrie, des phénomènes transitoires rapides interviennent dans des scénarii accidentels. Dans le cadre de l’industrie nucléaire, on peut citer, par exemple, l’Accident de Perte de Réfrigérant Primaire dans lequel une onde de détente susceptible de provoquer la vaporisation du fluide primaire et d’engendrer des dégâts structuraux se propage dans le circuit primaire d’un Réacteur nucléaire à Eau Pressurisée. De nos jours, la simulation de ces phénomènes transitoires rapides repose majoritairement sur des algorithmes d’intégration temporelle « explicites » car ils permettent de traiter de manière robuste et efficace ces problèmes qui sont généralement fortement non-linéaires. Malheureusement, du fait des contraintes de stabilité imposées sur les pas de temps, ces approches peinent à calculer des régimes permanents. Face à cette difficulté, dans de nombreux cas, on néglige les grandeurs cinématiques et les contraintes internes de l’état stationnaire du système considéré au moment de la survenue du phénomène transitoire simulé.
Par ailleurs, les applications visées font intervenir des structures solides en interaction avec le fluide, qui subissent de grandes déformations et peuvent éventuellement se fragmenter. Une technique de frontières immergées dite MBM (Mediating Body Method [1]) récemment développée au CEA permet de traiter de manière performante et robuste des structures à géométrie complexe et/ou subissant de grandes déformations. Cependant, ce couplage entre le fluide et la structure solide n’a été pensé que dans le cadre de phénomène transitoire « rapides » traités par des intégrateurs en temps « explicites ».
Le sujet de thèse proposé a pour objectif final d’enchaîner un calcul d’un régime nominal suivi d’un calcul transitoire dans un contexte d’interaction fluide/structure-immergée. La phase transitoire du calcul repose nécessairement sur une intégration temporelle explicite et fait intervenir la technique d’interaction fluide/structure MBM. Afin de générer un minimum de perturbations numériques lors de la transition entre les régimes nominal et transitoire, le calcul du régime nominal devra se faire sur le même modèle numérique que le calcul transitoire, et donc s’appuyer également sur une adaptation de la méthode MBM.
Des travaux récents ont permis de déterminer une stratégie efficace et robuste pour le calcul de régimes établis pour des écoulements compressibles, basée sur une intégration « implicite » en temps. Cependant, bien que générique, cette approche n’a pour le moment été éprouvée que dans le cas de gaz parfaits, et en l’absence de viscosité.
Les principaux enjeux techniques de cette thèse consistent, en se basant sur ces premiers travaux, à 1) valider et éventuellement adapter la méthodologie pour des fluides plus complexes (en particulier de l’eau), 2) introduire et adapter la méthode MBM pour l’interaction fluide-structure dans cette stratégie de calcul de régime établi, 3) introduire la viscosité du fluide, notamment dans le cadre de la méthode MBM développée initialement pour des fluide non-visqueux. A l’issue de ces travaux, des calculs de démonstration de transition implicite/explicite avec interaction fluide/structure seront mis en place et analysés.
A l’issue de la thèse, l’expérience de l’étudiant(e) pourra être valorisée vers des postes de chercheurs dans l’industrie (nucléaire, automobile, ferroviaire, aéronautique, médicale, …), et dans le réseau académique.
Un stage de fin d'études préparatoire à ces travaux de thèse peut être mis en place, selon les souhaits du candidat.
[1] Jamond, O., & Beccantini, A. (2019). An embedded boundary method for an inviscid compressible flow coupled to deformable thin structures: The mediating body method. International Journal for Numerical Methods in Engineering, 119(5), 305-333.
Ruptures de plaques métalliques sous choc : fissurations et perforations dynamiques
Il est nécessaire de développer des outils de simulation de perforation de plaques métalliques, permettant de garantir leur bonne tenue. Les simulations actuelles (utilisant un modèle de Johnson-Cook couplé à un critère de rupture uniquement basé sur une déformation plastique critique) permettent de restituer convenablement le fait que ces plaques se perforent ou pas, mais la compréhension fine et la simulation précise des différents modes de rupture observés peuvent être améliorées. Il semble ainsi difficile de pouvoir extrapoler avec confiance ces modèles dans des domaines de fonctionnement non étudiés expérimentalement.
L’objectif de cette thèse est donc de pouvoir proposer une modélisation à base physique qui puisse reproduire les différents modes de ruine (notamment les modes de « petaling » ou de « plugging »), en fonction de paramètres d’importance comme l’épaisseur des plaques, la vitesse d’impact, l’angle d’incidence, ou encore la présence ou non de raidisseurs. Cela nécessitera une étude de l’influence de la vitesse de déformation sur les mécanismes d’endommagement et la fissuration, couplée à une sélection des méthodes numériques et des modèles de comportement et de rupture adaptés. Des travaux à la thématique proche ont été développés dans le cadre de la thèse de Simon (2019). Des caractérisations multi-échelles, mécaniques et microstructurales, via des moyens d’essais avancés, seront donc menées, alimentant les développements de simulations sur clusters de calculs HPC.
Méthodes de synthèse de turbulence pour les approches hybrides CFD URANS/LES dans la simulation multi-échelle des cœurs nucléaires
Description du problème : Les interactions fluide-structure dans les coeurs de réacteurs nucléaires résultent de mécanismes se produisant à différentes échelles spatiales. L'échelle des composants représente l'écoulement global à l'intérieur du cœur et est généralement simulée par des méthodes de milieux poreux. L'échelle locale représente l'assemblage combustible : elle nécessite des méthodes de résolution d'échelle CFD pour calculer des forces fluides cohérentes sur les structures, et elle présente un certain degré de couplage fluide-structure. Dans le but d'effectuer des simulations multi-échelles d'un cœur, l'échelle locale nécessite la génération de conditions limites à partir de l'échelle des composants. Cela ne peut être réalisé que par une génération synthétique de turbulence, basée sur les résultats d'écoulement à l'échelle des composants. Cependant, l'approche des milieux poreux utilisée à l'échelle des composants ne contient pas de détails sur les quantités turbulentes : le développement de nouvelles méthodes numériques est nécessaire pour générer une turbulence synthétique cohérente dans cette configuration.
Objectifs :
1. Identifier les approches hybrides URANS/LES appropriées pour les problèmes liés aux vibrations des assemblages de combustible
2. Identifier les paramètres de turbulence disponibles dans les méthodes de milieux poreux et explorer les approches de mise à l'échelle ascendante
3. Développer une méthode de synthèse de turbulence applicable à tout ensemble de combustible à l'intérieur d'un cœur
Résultats attendus :
1. Une nouvelle approche pour l'analyse des vibrations induites par les fluides basée sur une méthode multi-échelle
2. Clarifier les paramètres clés pour générer des conditions limites résolues par turbulence appropriées dans la configuration spécifique étudiée
3. Valider les nouvelles méthodes sur les configurations expérimentales disponibles
Contrôle dynamique de la mécanique des piles à combustible Hydrogène via des approches expérimentale et numérique
L’impact du serrage des empilements de type PEMFC, appelés stacks, a été démontré depuis des années par la publication de nombreuses mesures expérimentales. Des systèmes de serrage passifs ont été développés pour assurer une certaine élasticité nécessaire notamment lors des changements de température ou pour améliorer la distribution des contraintes. Les composants développés sont de plus en plus fins avec une gamme d'élasticité réduite, de plus de nouvelles publications viennent de montrer l’impact du serrage jusqu’au niveau des couches actives de quelques microns d'épaisseur et il est donc maintenant critique d’intégrer un serrage dynamique optimisé.
L’objectif de la thèse est d’étudier l’impact du contrôle dynamique du serrage des stacks sur les performances en fonction des conditions opératoires. Ces travaux seront réalisés sur des empilements représentatifs intégrant soit des plaques bipolaires embouties: la technologie de référence, soit des cellules imprimées : la technologie innovante en cours de développement au CEA. Parallèlement le candidat prendra en main le modèle développé dans un doctorat en cours, simulant les contraintes, les déformations et les différents paramètres multiphysiques : porosité, résistance électrique, en fonction du serrage.
La synthèse des résultats expérimentaux et numériques permettra au candidat d'avancer dans la compréhension de l’influence du serrage et de proposer des solutions d’amélioration notamment de la durabilité qui est actuellement le paramètre le plus critique pour nos projets européens ou industriels.
Suivant l’avancement de la thèse, des tests vibratoires pourront être effectuées pour évaluer l’apport potentiel de la spectrométrie mécanique notamment en vue d’un diagnostic.
Visualisation 3D in situ et modélisation de la croissance de grains au cours de la solidification d’un acier 316L lors des procédés de soudage et de fabrication additive
Actuellement, le CEA mène des études de R&D afin d’évaluer les potentialités des procédés de Fabrication Additive (FA) par dépôt de fil (WAAM et WLAM) pour l’acier 316L, matériau qui entre dans la fabrication de très nombreux composants. Ces procédés sont proches des techniques de soudage actuellement en usage pour la fabrication et la réparation de pièces pour le nucléaire. Des microstructures présentant une forte texture cristallographique sont souvent obtenues après soudage ou fabrication additive, conduisant à des comportements mécaniques fortement anisotropes, et la prévision de ces microstructures est aussi un élément clé pour fiabiliser les contrôles non destructifs des pièces ainsi fabriquées.
L’objectif de la thèse, qui s’appuiera sur une démarche couplée expérimentation/simulation, est de mieux comprendre les principaux phénomènes physiques intervenant lors de la solidification, en particulier la croissance des grains.
Pour cela, une démarche originale de caractérisation de ces phénomènes sera conduite sur la base d’un essai innovant et instrumenté dans le but de bénéficier d’une vision quasi-3D haute résolution de la zone fondue au cours de la solidification. Les résultats issus de l’approche expérimentale viendront enrichir les modèles physiques de solidification, déjà implémentés dans une modélisation 3D CA-FE (Cellular Automaton-Finite Element), couplant une approche par Automates Cellulaires (CA) et une modélisation (FE) thermique ou multiphysique du bain fondu (FE), pour simuler les microstructures de solidification issues des procédés de fabrication additive et de soudage.
Etude de l’influence de la microstructure d’un acier 316L élaboré par procédé L-PBF sur ses propriétés mécaniques : caractérisation et modélisation du comportement en fluage et en fatigue
Les recherches sur la fabrication additive pour l'industrie nucléaire montrent que la production de composants en acier austénitique 316L par fusion laser sur lit de poudre (L-PBF) présente des défis techniques, notamment le contrôle des procédés, les propriétés des matériaux, leur qualification et la prédiction de leur comportement mécanique en conditions de service. Les propriétés finales diffèrent des procédés traditionnels, présentant souvent une anisotropie qui remet en question les normes de conception existantes.
Ces différences sont liées à la microstructure unique résultant du procédé L-PBF. La maîtrise de la chaîne de fabrication, de la consolidation à la qualification, nécessite une compréhension des interactions entre les paramètres du procédé, la microstructure et les propriétés mécaniques.
L'objectif de la thèse est d'étudier les relations entre la microstructure, la texture et les propriétés mécaniques de l'acier 316L fabriqué par L-PBF, sous sollicitations statiques ou cycliques. Cela comprend l'influence sur les propriétés de fluage et de fatigue, et le développement d'un modèle de prévision du comportement mécanique. A partir d'échantillons d'acier 316L avec des microstructures spécifiques consolidés par L-PBF, l'étude proposée vise à établir des liens entre la microstructure et les propriétés mécaniques pour mieux prédire le comportement en service.
Simulation numérique polycristalline du comportement mécanique des gaines des crayons combustibles des réacteurs à eau pressurisée
Les crayons combustibles des réacteurs nucléaires à eau pressurisée sont constitués de pastilles d’oxyde d’uranium empilées dans des tubes en alliages de zirconium. En réacteur, ces matériaux subissent des sollicitations mécaniques conduisant à leur déformation irréversible. Afin de garantir la sureté et augmenter la performance des réacteurs, ces déformations doivent être modélisées et prédites de la façon la plus précise possible. De façon à encore améliorer la prédictivité des modèles, le caractère polycristallin de ces matériaux ainsi que les mécanismes physiques de déformation doivent être pris en compte. C’est l’objectif de cette étude qui consiste à développer un modèle numérique multi-échelle à base physique de la gaine des crayons combustible.
Le comportement mécanique des matériaux métalliques est généralement modélisé en considérant ceux-ci comme homogènes. Or, les phénomènes de plasticité cristalline à l’échelle des grains ainsi que le caractère polycristallin de ces matériaux pilotent au premier ordre leur comportement. Afin de prendre en compte leur caractère hétérogène, des modèles polycristallins, auto-cohérents en champ moyen, basés sur la théorie de l’homogénéisation des matériaux hétérogènes sont utilisés depuis de nombreuses années. Récemment, un modèle polycristallin, développé dans un cadre linéaire et isotherme, a pu être couplé à des calculs par éléments finis 1D axisymétriques pour simuler la déformation des gaines en réacteur. Un historique de chargement mécanique complexe, imitant les sollicitations subies par la gaine, a pu être simulé.
L’objectif de ce travail de thèse est d’étendre le domaine d’application de ce modèle notamment en l’appliquant à un cadre non-linéaire afin de simuler des sollicitations à forte contrainte, de l’étendre à des sollicitations anisothermes mais également de réaliser des simulations par éléments finis en 3D avec en chaque élément et chaque pas de temps une simulation par le modèle polycristallin. Ces développements théoriques et numériques seront finalement appliqués à la simulation du comportement des crayons combustibles en situation de rampe de puissance grâce à son intégration à une plateforme logiciel utilisée pour des applications industrielles. Cette approche permettra de mieux évaluer les marges disponibles pour faire fonctionner le réacteur de façon plus flexible, permettant ainsi de s’adapter à l’évolution du mix énergétique et cela en toute sécurité.
Modélisation thermo-hydraulique d’un générateur de vapeur et propagation d’espèces chimiques
Les générateurs de vapeur sont des composants essentiels des réacteurs nucléaires dont la fonction principale est l’échange de chaleur. Les espèces chimiques présentes dans les générateurs de vapeur sont à l’origine de nombreux phénomènes parasites (colmatage, encrassement, dépôt de boue…). La simulation numérique du transport des espèces, prenant en compte la migration d’espèces chimiques et les échanges entre espèces, à la fois intra- et inter-phasiques, permettra une meilleure connaissance et une meilleure gestion de ces problèmes. La résolution numérique des systèmes de transport d’espèces présente de réelles difficultés notamment la gestion de l’apparition et de la disparition totale de certaines espèces, de forts taux de vide, ainsi que des temps de calcul rapidement excessifs.
Tout en se basant sur le nouveau code pour les composants nucléaires développé au STMF, la thèse adressera les trois principales problématiques scientifiques suivantes :
• En amont, l’analyse de méthodes numériques permettant en particulier la gestion de l’évanescence, comme mentionné plus haut, et la modélisation thermo-hydraulique à forts taux de vide. On s’appuiera pour cela sur les schémas numériques PolyMAC et PolyVEF, déjà implémentés dans le code composant.
• La modélisation physique d’un générateur de vapeur dans le nouveau code composant, via l’ajout (en C++) des corrélations spécifiques aux générateurs de vapeur, la complétion des lois d’état déjà disponibles, ….
• La détermination des espèces chimiques majeures à transporter, afin de pouvoir prendre en compte à la fois la thermo-hydraulique mais aussi la chimie. Le couplage algorithmique entre la thermo-hydraulique et la chimie, prenant en compte une rétroaction, étant l’objectif à long terme.
Tout en bénéficiant de la parallélisation existante du code composant, la modélisation thermo-hydraulique et chimique se fera en tenant compte des contraintes sur les temps de calcul.
Modélisation chimie-mécanique du couplage entre carbonatation, corrosion des armatures et fissuration d’un milieu cimentaire
La corrosion des armatures est une des principales causes de dégradation prématurée des infrastructures en béton, y compris dans le domaine nucléaire où le béton est largement utilisé dans les enceintes de confinement et les structures de stockage de déchets. La carbonatation due à la pénétration du CO2 dans le béton entraîne une baisse du pH de la solution porale, favorisant la corrosion des armatures. Cette corrosion entraine la formation de produits expansifs pouvant provoquer la fissuration du matériau. Le travail de thèse, proposé dans le cadre d’une collaboration au sein d’un projet européen entre le CEA de Saclay, l'École des Mines de Paris - PSL et l'IRSN, vise à développer un modèle numérique pour simuler ces phénomènes. Le modèle combine un code de transport réactif (Hytec) et un code d'éléments finis (Cast3M) pour étudier les effets locaux de la corrosion par carbonatation sur la fissuration du béton. Ce projet s’appuiera sur des travaux expérimentaux réalisés en parallèle permettant de recueillir des données pour identifier les paramètres et valider le modèle. La première partie du travail se concentrera sur la modélisation de la carbonatation des matériaux cimentaires en conditions insaturées, tandis que la deuxième portera sur la corrosion des armatures due à la baisse de pH induite par cette carbonatation. Le modèle décrira la croissance des produits de corrosion et leur expansion induisant des contraintes dans le béton et une possible microfissuration.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multi-physiques et multi-échelles. La thèse sera réalisée principalement au CEA de Saclay et à l'École des Mines de Paris – PSL (Fontainebleau).
Amélioration de la prédictivité des simulations des grandes échelles par apprentissage machine guidé par des simulations haute fidélité
Cette thèse vise à explorer l'application des techniques d'apprentissage machine pour améliorer la modélisation de la turbulence et les simulations numériques en mécanique des fluides. On s’intéresse plus spécifiquement à l’application des réseaux de neurones artificiels (ANN) pour la simulation des grandes échelles. Cette dernière est une approche de modélisation qui se concentre sur la résolution directe des grandes structures turbulentes, tout en modélisant les petites échelles par un modèle sous-maille. Elle requiert de résoudre un certain ratio de l’énergie cinétique totale. Néanmoins, ce ratio peut être difficilement atteignable pour des simulations industrielles en raison du fort coût de calcul, conduisant à des simulations sous-résolues. On souhaite améliorer ces dernières en orientant les travaux selon deux axes principaux : 1) Utiliser des ANN pour établir des modèles des modèles sous-mailles génériques qui surpassent les modèles analytiques et compensent la grossièreté de la discrétisation spatiale ; 2) Entraîner des ANN pour apprendre des modèles de paroi. L’un des principaux défis à relever est la capacité des nouveaux modèles à généraliser correctement dans des configurations différentes de celles utilisées lors de l'entraînement. Ainsi, la prise en compte des différentes sources et quantification des incertitudes joue un rôle vital dans l’amélioration de la fiabilité et de la robustesse des modèles issus de l'apprentissage machine.