Simulation numérique polycristalline du comportement mécanique des gaines des crayons combustibles des réacteurs à eau pressurisée
Les crayons combustibles des réacteurs nucléaires à eau pressurisée sont constitués de pastilles d’oxyde d’uranium empilées dans des tubes en alliages de zirconium. En réacteur, ces matériaux subissent des sollicitations mécaniques conduisant à leur déformation irréversible. Afin de garantir la sureté et augmenter la performance des réacteurs, ces déformations doivent être modélisées et prédites de la façon la plus précise possible. De façon à encore améliorer la prédictivité des modèles, le caractère polycristallin de ces matériaux ainsi que les mécanismes physiques de déformation doivent être pris en compte. C’est l’objectif de cette étude qui consiste à développer un modèle numérique multi-échelle à base physique de la gaine des crayons combustible.
Le comportement mécanique des matériaux métalliques est généralement modélisé en considérant ceux-ci comme homogènes. Or, les phénomènes de plasticité cristalline à l’échelle des grains ainsi que le caractère polycristallin de ces matériaux pilotent au premier ordre leur comportement. Afin de prendre en compte leur caractère hétérogène, des modèles polycristallins, auto-cohérents en champ moyen, basés sur la théorie de l’homogénéisation des matériaux hétérogènes sont utilisés depuis de nombreuses années. Récemment, un modèle polycristallin, développé dans un cadre linéaire et isotherme, a pu être couplé à des calculs par éléments finis 1D axisymétriques pour simuler la déformation des gaines en réacteur. Un historique de chargement mécanique complexe, imitant les sollicitations subies par la gaine, a pu être simulé.
L’objectif de ce travail de thèse est d’étendre le domaine d’application de ce modèle notamment en l’appliquant à un cadre non-linéaire afin de simuler des sollicitations à forte contrainte, de l’étendre à des sollicitations anisothermes mais également de réaliser des simulations par éléments finis en 3D avec en chaque élément et chaque pas de temps une simulation par le modèle polycristallin. Ces développements théoriques et numériques seront finalement appliqués à la simulation du comportement des crayons combustibles en situation de rampe de puissance grâce à son intégration à une plateforme logiciel utilisée pour des applications industrielles. Cette approche permettra de mieux évaluer les marges disponibles pour faire fonctionner le réacteur de façon plus flexible, permettant ainsi de s’adapter à l’évolution du mix énergétique et cela en toute sécurité.
Modélisation thermo-hydraulique d’un générateur de vapeur et propagation d’espèces chimiques
Les générateurs de vapeur sont des composants essentiels des réacteurs nucléaires dont la fonction principale est l’échange de chaleur. Les espèces chimiques présentes dans les générateurs de vapeur sont à l’origine de nombreux phénomènes parasites (colmatage, encrassement, dépôt de boue…). La simulation numérique du transport des espèces, prenant en compte la migration d’espèces chimiques et les échanges entre espèces, à la fois intra- et inter-phasiques, permettra une meilleure connaissance et une meilleure gestion de ces problèmes. La résolution numérique des systèmes de transport d’espèces présente de réelles difficultés notamment la gestion de l’apparition et de la disparition totale de certaines espèces, de forts taux de vide, ainsi que des temps de calcul rapidement excessifs.
Tout en se basant sur le nouveau code pour les composants nucléaires développé au STMF, la thèse adressera les trois principales problématiques scientifiques suivantes :
• En amont, l’analyse de méthodes numériques permettant en particulier la gestion de l’évanescence, comme mentionné plus haut, et la modélisation thermo-hydraulique à forts taux de vide. On s’appuiera pour cela sur les schémas numériques PolyMAC et PolyVEF, déjà implémentés dans le code composant.
• La modélisation physique d’un générateur de vapeur dans le nouveau code composant, via l’ajout (en C++) des corrélations spécifiques aux générateurs de vapeur, la complétion des lois d’état déjà disponibles, ….
• La détermination des espèces chimiques majeures à transporter, afin de pouvoir prendre en compte à la fois la thermo-hydraulique mais aussi la chimie. Le couplage algorithmique entre la thermo-hydraulique et la chimie, prenant en compte une rétroaction, étant l’objectif à long terme.
Tout en bénéficiant de la parallélisation existante du code composant, la modélisation thermo-hydraulique et chimique se fera en tenant compte des contraintes sur les temps de calcul.
Modélisation chimie-mécanique du couplage entre carbonatation, corrosion des armatures et fissuration d’un milieu cimentaire
La corrosion des armatures est une des principales causes de dégradation prématurée des infrastructures en béton, y compris dans le domaine nucléaire où le béton est largement utilisé dans les enceintes de confinement et les structures de stockage de déchets. La carbonatation due à la pénétration du CO2 dans le béton entraîne une baisse du pH de la solution porale, favorisant la corrosion des armatures. Cette corrosion entraine la formation de produits expansifs pouvant provoquer la fissuration du matériau. Le travail de thèse, proposé dans le cadre d’une collaboration au sein d’un projet européen entre le CEA de Saclay, l'École des Mines de Paris - PSL et l'IRSN, vise à développer un modèle numérique pour simuler ces phénomènes. Le modèle combine un code de transport réactif (Hytec) et un code d'éléments finis (Cast3M) pour étudier les effets locaux de la corrosion par carbonatation sur la fissuration du béton. Ce projet s’appuiera sur des travaux expérimentaux réalisés en parallèle permettant de recueillir des données pour identifier les paramètres et valider le modèle. La première partie du travail se concentrera sur la modélisation de la carbonatation des matériaux cimentaires en conditions insaturées, tandis que la deuxième portera sur la corrosion des armatures due à la baisse de pH induite par cette carbonatation. Le modèle décrira la croissance des produits de corrosion et leur expansion induisant des contraintes dans le béton et une possible microfissuration.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multi-physiques et multi-échelles. La thèse sera réalisée principalement au CEA de Saclay et à l'École des Mines de Paris – PSL (Fontainebleau).
Amélioration de la prédictivité des simulations des grandes échelles par apprentissage machine guidé par des simulations haute fidélité
Cette thèse vise à explorer l'application des techniques d'apprentissage machine pour améliorer la modélisation de la turbulence et les simulations numériques en mécanique des fluides. On s’intéresse plus spécifiquement à l’application des réseaux de neurones artificiels (ANN) pour la simulation des grandes échelles. Cette dernière est une approche de modélisation qui se concentre sur la résolution directe des grandes structures turbulentes, tout en modélisant les petites échelles par un modèle sous-maille. Elle requiert de résoudre un certain ratio de l’énergie cinétique totale. Néanmoins, ce ratio peut être difficilement atteignable pour des simulations industrielles en raison du fort coût de calcul, conduisant à des simulations sous-résolues. On souhaite améliorer ces dernières en orientant les travaux selon deux axes principaux : 1) Utiliser des ANN pour établir des modèles des modèles sous-mailles génériques qui surpassent les modèles analytiques et compensent la grossièreté de la discrétisation spatiale ; 2) Entraîner des ANN pour apprendre des modèles de paroi. L’un des principaux défis à relever est la capacité des nouveaux modèles à généraliser correctement dans des configurations différentes de celles utilisées lors de l'entraînement. Ainsi, la prise en compte des différentes sources et quantification des incertitudes joue un rôle vital dans l’amélioration de la fiabilité et de la robustesse des modèles issus de l'apprentissage machine.
Accélération de simulations thermo-mécaniques par Réseaux de Neurones --- Applications à la fabrication additive et la mise en forme des métaux
Dans un certain nombre d'industries telle que la mise en forme des métaux ou la fabrication additive, l'écart entre la forme désirée et la forme effectivement obtenue est important, ce qui freine le développement de ces méthodes de fabrication. Cela est dû en bonne partie à la complexité des processus thermiques et mécaniques en jeu, difficiles à simuler à des fins d’optimisation du fait du temps de calcul important de la simulation des phénomènes en jeu.
La thèse vise à réduire significativement cet écart grâce à l'accélération des simulations thermo-mécaniques par éléments finis, notamment via le design d'une architecture de réseau de neurones adaptée, en s'appuyant sur les connaissances physiques théoriques.
Pour mener à bien ce sujet, la thèse bénéficiera d'un écosystème favorable aussi bien au LMS de l'École polytechnique qu'au CEA List : architecture PlastiNN développée en interne (brevet en cours de dépôt), bases de données mécanique existantes, supercalculateur FactoryIA et DGX, machine d'impression 3D. Il s'agira dans un premier temps de générer des bases de données à partir de simulations éléments finis thermo-mécaniques, puis d'adapter PlastiNN à apprendre de telles simulations, avant de mettre en œuvre des procédures d'optimisation s'appuyant sur ces réseaux de neurones.
L'objectif final de la thèse est d'illustrer l'accélération de simulations éléments finis ainsi obtenue sur des cas réels : d'une part par l'instauration d'une rétroaction durant l'impression métallique via la mesure du champ de température pour réduire l'écart entre géométrie désirée et géométrie fabriquée, d'autre part par la mise en place d'un outil de commande de forge qui permet d'arriver à une géométrie désirée à partir d'une géométrie initiale. Les deux applications s'appuieront sur une procédure d'optimisation rendue réalisable par l'accélération des simulations thermo-mécaniques.
Modélisation et Validation expérimentale d’un réacteur catalytique et optimisation du procédé pour la production de e-Biocarburants
Les procédés « Biomass-to-liquid » visant une gazéification de biomasse en syngaz (mélange mélange CO+CO2+H2) puis une transformation de ce syngaz par une synthèse Fischer-Tropsch visant la production de différents carburants (kérosène, diesel, gasoil marin) connaissent un essor ces 20 dernières années. Plusieurs démonstrateurs ont été développés, notamment en Europe. Cependant, le trop faible ratio H/C du syngaz résultant de la gazéification nécessite une recirculation voire le rejet du CO2 en sortie du procédé ce qui complexifie les séparations et a un impact négatif sur la valorisation du carbone biosourcé.
Récemment, la possibilité d’effectuer, au sein d’un même réacteur catalytique, la réaction de Reverse Water Gas Shift (RWGS) et la réaction de Fischer-Tropsch (FT) à l’aide de catalyseurs à base de fer et de différents promoteurs a été démontrée (Riedel, 1999) et reproduite dans le cadre de plusieurs thèses CEA/CP2M (Panzone, 2019 ). Elle ouvre de nouveaux potentiels pour valoriser au mieux l’ensemble du contenu carboné de la biomasse à condition de compléter le syngaz par un apport d’hydrogène issu d’électricité renouvelable.
L’objectif de la thèse se concentre sur l’hydrogénation directe d’un mélange CO/CO2 en hydrocarbures qui consiste à enchainer au sein du même réacteur les reactions de RWGS et la synthèse Fischer-Tropsch . Il s’agit de modéliser cette synthèse catalytique dans un réacteur à lit fixe dans des conditions représentatives d’un procédé industriel de PBtL afin d’en optimizer le fonctionnement.
Etude et simulation des entraînements de phase dans les batteries de mélangeurs-décanteurs
Dans le cadre du développement de nouveaux procédés de séparation par extraction liquide-liquide, des essais expérimentaux sont mis en œuvre afin de démontrer la récupération des éléments valorisables suffisamment décontaminés des impuretés. Ces essais sont couramment réalisés en batteries de mélangeurs décanteurs. Cependant, en fonction des conditions opératoires, ces produits finis peuvent être contaminés par des impuretés. Cette contamination résulte de la combinaison de plusieurs facteurs :
-Hydrodynamique : Entrainement dans le solvant de gouttes aqueuses non décantées contenant des impuretés
-Chimique : le facteur de séparation des impuretés est faible (inférieur à 10-3)
-Procédé : l’entrainement des gouttes est amplifié avec l’augmentation de la cadence (réduction du temps de séjour des gouttes)
Cette thèse a pour but d’accroitre la compréhension des différents phénomènes responsables de ces entraînements de phase afin d’estimer des paramètres opératoires optimaux et de garantir une contamination des produits finis inférieure à un seuil fixé.
Il sera question de mettre au point un modèle macroscopique permettant de prédire le débit d’entrainement de gouttes non décantées en fonction des conditions opératoires dans les batteries de mélangeurs décanteurs. Il devra s’appuyer sur des simulations hydrodynamiques couplant la résolution d’un bilan de population de gouttes à un écoulement de phase continue. Un couplage sera réalisé entre ce modèle hydrodynamique et le code PAREX ou PAREX+ permettant de dimensionner les schémas de procédé.
La qualification des modèles proposés devra être faite par des comparaisons à des mesures expérimentales (basées sur des compagnes d’essai antérieures ou à venir).
Développement d’un jumeau numérique d’un équipement industriel : couplage chimie / thermo-hydraulique / corrosion
Ce sujet de thèse s’inscrit dans le cadre de la R&D CEA visant à développer et améliorer les technologies décarbonées pour la production d’énergie, en réponse aux enjeux climatiques. Plus précisément, il s’intègre dans l’étape de traitement-recyclage du combustible utilisé dans les réacteurs nucléaires actuels. La simulation du fonctionnement et du vieillissement de ces équipements est un enjeu majeur pour la pérennisation des activités des usines de traitement-recyclage.
L’objectif de la thèse est de répondre à ces enjeux, en développant une modélisation de la corrosion d’un équipement ou plusieurs équipements des usines en se basant sur leur fonctionnement. Cela nécessitera de coupler des modèles de réactions chimiques (en solution et de corrosion) avec des modèles de thermo-hydraulique. Ces développements seront réalisés à l’aide d’outils de modélisation développés par le CEA.
En permettant de simuler la corrosion de l’équipement, le développement d’un tel modèle permettra d’optimiser sa durée de vie (en cherchant à optimiser son fonctionnement, par exemple) ou d’estimer avec précision (et donc d’anticiper) le moment nécessaire à son remplacement.
Rupture fragile d’aciers faiblement alliés : sensibilité des zones mésoségrégées aux conditions de trempe et revenu
Les enceintes sous pression du circuit primaire des centrales nucléaires françaises sont élaborées par assemblage de composants en aciers faiblement alliés, mis en forme à partir de lingots de fort tonnage (> 100t) dont la solidification s’opère de manière non-uniforme. La forte épaisseur des pièces conduit par ailleurs à ce que les évolutions de température lors des traitements thermiques post-forgeage varient significativement en fonction de la position dans l’épaisseur de la pièce. Ces deux effets concourent à produire des microstructures hétérogènes qui peuvent fragiliser sensiblement le matériau.
L’objectif scientifique de cette thèse est d’évaluer quels éléments au sein de la microstructure sont responsable, et dans quelle proportion, d’une fragilisation accrue du matériau pour certaines conditions défavorables de traitements thermiques. Inversement, mieux cerner le domaine de conditions de traitements thermiques pour lequel cette fragilisation du matériau reste contenue, pour une microstructure initiale donnée, est un objectif à fort enjeu industriel.
Plusieurs traitements thermiques ont déjà été appliqués à des coupons issus d’une pièce industrielle rebutée avant de les solliciter en flexion par choc, dans le domaine de la transition ductile fragile du matériau. Des essais mécaniques instrumentés seront menés ainsi que des analyses fractographiques et microstructurales de pointe afin d’identifier l’évolution de la nature des sites d’amorçage en fonction des conditions de traitement thermique. Ces éléments seront alors intégrés dans un modèle d’approche locale de la rupture développé spécifiquement pour rendre compte des effets de variations microstructurales sur la résistance à la rupture fragile des aciers faiblement alliés.
Flottation pour le recyclage de matières actives de batteries Li-ion : limitations et influence de l’hydrodynamique et de la physico-chimie interfaciale sur leur séparation sélective
Le recyclage des batteries est aujourd’hui un enjeu majeur pour l’UE, à la fois géopolitique, économique et environnemental. Très peu valorisé, le graphite, constituant l’anode des batteries Li-ion est concentré dans une fraction appelée blackmass où il est présent en mélange avec des oxydes métalliques à forte valeur commerciale. Ce graphite est alors considéré comme une impureté et cause le surdimensionnement des opérations hydrométallurgiques. Etant considéré comme critique et afin de réduire les coûts opératoires et d’investissement des procédés hydrométallurgiques, il est proposé de réaliser une étape de prétraitement de la blackmass afin de valoriser en voie directe le graphite. Cette étape est réalisée par flottation. Ce procédé de séparation de solides suspendus dans l’eau fait intervenir une troisième gazeuse sous forme de bulles d’air afin de séparer les particules suivant leur différence de mouillabilité et d’attachement aux bulles d’air. La complexité du processus de flottation, liée à la dépendance à la fois aux natures des interfaces et aux conditions hydrodynamiques, nécessite la réalisation de travaux de compréhension approfondie des mécanismes mis en jeux.
L’objectif du sujet proposé, qui fait suite à deux projets internes, est, en s’appuyant notamment sur des méthodes de caractérisation des interfaces, de stabilité, rhéologie des mousses, d’imagerie etc. d’identifier les mécanismes mis en jeu durant la flottation. Ceci dans l’optique d’améliorer les performances de l’étape de flottation et de pouvoir l’étendre à d’autres problématiques.
Les travaux de thèse s’effectueront au Laboratoire des technologies de Valorisation des procédés et des Matériaux pour les ENR (LVME) au CEA de Grenoble et en collaboration étroite avec les Laboratoire de Caractérisations Avancées pour l’Energie (LCAE) au CEA Grenoble, le Laboratoire des Procédés Supercritiques et décontamination (LPSD) ainsi que le Laboratoire de développement des procédés de recyclage et valorisation pour les systèmes énergétiques décarbonnés (LRVE) du CEA de Marcoule (30). En parallèle du travail expérimental, des modèles et mécanismes mis en jeu et les solutions techniques associées devront être proposés.
L’intérêt scientifique et industriel du sujet garantit une valorisation des travaux lors de communications internationales. Après le doctorat, à la fois l’intégration parmi les meilleures équipes de recherches académiques ou appliquées ou une carrière R&D directement dans le monde de l’industrie seront possibles.