Aciers austénitiques à haute limite d’élasticité pour le nucléaire : conception numérique et étude expérimentale

La thèse s’inscrit dans un projet qui vise à concevoir de nouvelles chimies d’aciers inoxydables austénitiques pour le nucléaire qui soient spécifiquement adaptées aux conditions vues par la pièce en service et à son mode d’élaboration.
Plus précisément, elle concerne les aciers de boulonnerie obtenus par nitruration contrôlée de poudres ultérieurement densifiées par Compression Isostatique à Chaud. Les nuances actuelles présentent en effet des limitations liées à la corrosion sous contrainte, or la nitruration permet d'augmenter la quantité de chrome, ce qui a un effet bénéfique.
Il s'agit d'abord d'établir un cahier des charges et une liste de critères puis de réaliser une optimisation de composition multicritères par calculs CALPHAD dans le système Fe-Cr-Ni-Mo-X-N-C, afin de sélectionner des compositions prometteuses. On passera ensuite à l'élaboration du matériau: étude et modélisation de la nitruration des poudres, nitruration de lopins et densification, traitements thermiques. Une composition sera alors sélectionnée pour passer à une caractérisation poussée: propriétés mécaniques et mécanismes de déformation associés, comportement en corrosion. On s'attachera en particulier à démontrer l'intérêt de la nouvelle nuance par rapport à la nuance actuelle.

Electrolyte CTC solide pour le système LiS

Les batteries Lithium-Soufre (Li-S) représentent l'une des technologies de stockage d'énergie les plus prometteuses pour la cinquième génération de batteries, souvent appelée post-Li-ion. Avec une densité énergétique théorique cinq fois supérieure à celle des batteries Li-ion conventionnelles et une disponibilité abondante du soufre, le système Li-S offre un potentiel unique pour répondre aux besoins croissants en stockage d'énergie durable. Cependant, la technologie actuelle est limitée par des défis majeurs liés à la dissolution des polysulfures dans l’électrolyte, entraînant des pertes de soufre actif, entrainant une faible durée de vie en cyclage et donc des performances électrochimiques insuffisantes. Ces limitations empêchent aujourd'hui le déploiement de cette technologie sur le marché des batteries.
Cette thèse vise à explorer une voie alternative basée sur un mécanisme de conversion électrochimique du soufre entièrement en voie solide. Pour ce faire, un électrolyte solide organique de nouvelle génération développé dans le laboratoire sera implémenté. Cet électrolyte possède un mécanisme unique de conduction des ions lithium au sein d'une maille cristalline, empêchant la solubilisation des polysulfures. Les objectifs principaux seront :
1. Comprendre et maîtriser les mécanismes de conduction ionique dans ces électrolytes.
2. Intégrer cet électrolyte solide dans un système Li-S innovant.
3. Optimiser la structure de la cathode pour le mécanisme solide et évaluer les performances électrochimiques à l’échelle d’un prototype représentatif.
Le doctorant sera amené à utiliser un large éventail de techniques de caractérisation et d’analyse pour mener à bien ce projet :
• Formulation et caractérisation de l’électrolyte solide organique : Des techniques telles que FT-IR et RMN pour analyser la structure chimique et identifier les propriétés des matériaux synthétisés (DSC, ATG, DRX…).
• Caractérisation électrochimique : Analyses par spectroscopie d'impédance électrochimique (EIS), voltampérométrie cyclique (CV) et tests de cyclage symétriques pour étudier les propriétés de conduction ionique et la stabilité de l’électrolyte.
• Formulation et étude des performances de la cathode : Formulation du composites carbone/soufre et formulation de la cathode soufre intégrant l’électrolyte ; Tests de cyclage galvanostatique et analyses avancées des interfaces pour comprendre et optimiser la conversion du soufre en voie solide.
Les travaux de recherche se dérouleront en trois grandes étapes :
1. Développement et caractérisation de l’électrolyte solide : Élaboration des matériaux, analyse des mécanismes de conduction et optimisation des propriétés ioniques et mécaniques.
2. Conception et optimisation de la structure de la cathode : Amélioration des interfaces électrolyte/cathode pour une conversion solide du soufre.
3. Évaluation des performances électrochimiques : Validation expérimentale des prototypes à travers des tests approfondis, incluant la cyclabilité et les performance en puissance

Développement d'un modèle prédictif de puissance électrique pour un module photovoltaïque soumis à des contraintes spatiales

Le CEA développe des nouvelles architectures cellules et modules ainsi que des outils de simulation pour évaluer les performances électriques des systèmes photovoltaïques (PV) dans leur environnement de fonctionnement. Un des modèles appelé CTMod (Cell To Module) développé au CEA, permet de tenir compte des différents matériaux constituant le module, mais aussi, des différentes architectures de cellules. Pour les applications spatiales, la communauté souhaite utiliser les technologies terrestres à base de silicium intégrables sur des PVA (Photovoltaïc Assembly) flexibles. L’environnement spatial impose de très fortes contraintes. Une évaluation pertinente des performances en début et fin de mission est donc indispensable pour leur dimensionnement.
L’objectif de la thèse est de corréler les modèles physiques de dégradation rayonnement-matière spécifique pour une utilisation dans le domaine spatial avec les modèles électriques des cellules photovoltaïques. Les dégradations des performances liées aux différentes irradiations électrons, protons et ultraviolet (UV) de l’environnement spatial seront évaluées et validées expérimentalement. Associé au modèle CTMod, cette nouvelle approche jamais abordée dans la littérature permettra d’avoir une compréhension plus pointue des interactions entre les radiations et les PVAs. Ces dégradations sont issues de phénomènes de dépôts d’énergie non ionisants, quantifiés par la dose de défauts par déplacement, et ionisants quantifiés par la dose ionisante totale pour les protons et électrons. Pour les UV, l’excitation des électrons de la matière engendre des ruptures de chaînes dans les matériaux organiques et des centres colorés dans les matériaux inorganiques. Dans un premier temps la cellule solaire utilisée dans le modèle sera une cellules Silicium, mais le modèle pourra être complété avec d’autres types de cellules solaires en développement telles que les cellules à base de perovskite.

Etude numérique et expérimentale de la fissuration des combustibles nucléaires oxydes et de la séparation de l’interface oxyde-gaine

Le CEA mène des études et expertises sur les combustibles nucléaires céramiques à base de dioxyde d’uranium (UO2). Des schémas numériques avancés pour la simulation prédictive du comportement de ces combustibles sont développés et s’appuient sur une démarche d’amélioration continue des modèles et des lois relatives aux propriétés physiques des matériaux. Les combustibles nucléaires sont des céramiques poreuses, dont la microstructure dépend de leur procédé de fabrication. Afin de garantir le confinement des produits de fission et le bon refroidissement du combustible, des gaines en alliage métallique sont disposées autour des combustibles.
Au cours de leur utilisation en réacteur, on observe une interaction mécanique entre le combustible et la gaine et potentiellement un accrochage, ce qui favorise le refroidissement du combustible en réduisant la résistance thermique de l’interface. Des fissures peuvent également apparaitre au sein du combustible créant, selon leur orientation, des barrières thermiques ou des chemins d’écoulement privilégiés pour les produits de fission créés lors de l’irradiation. Ces gaz vont ensuite exercer une pression sur les faces intérieures de la gaine ce qui peut, dans certaines conditions, entrainer une séparation/un décollement de l’interface combustible gaine et potentiellement l’apparition d’une lame de gaz entre le combustible et la gaine ce qui aurait un impact à la fois sur la thermique, et sur le comportement des produits de fission volatils.

Le but de cette thèse est donc de développer une démarche de caractérisation et modélisation de l’interface combustible-gaine fondée sur l’expérience, permettant notamment de prédire les conditions pouvant conduire à son décollement. Le travail consistera tout d’abord en la simulation numérique d’essais de décollement d’interface existants, ainsi que de l’effet d’une pression de gaz à l’intérieur du combustible, en présence ou non de fissures au sein du combustible. Il est envisagé de décrire numériquement l’interface par un modèle de zone cohésive, régi par la contrainte maximale, ainsi que par l’énergie dissipée pour la création de fissure. Les simulations permettront de comprendre le rôle des chacun de ces paramètres dans le décollement de la gaine. En fonction de ces résultats, il est envisagé de concevoir de nouveaux essais pour identifier les paramètres des lois de comportement mises en œuvre.

Ce travail sera basé au Département d’Etude des Combustibles de l’Institut IRESNE (CEA-Cadarache) pour les aspects spécifiques au comportement du combustible, et mené en étroite collaboration avec le Laboratoire de Mécanique Paris-Saclay pour l’étude des interfaces. Ainsi la personne travaillant sur ce sujet bénéficiera d’un environnement scientifique riche et stimulant et aura, en outre, la responsabilité de proposer, développer, réaliser et interpréter des expériences sur combustible nucléaire. Les compétences et connaissances acquises par le candidat seront valorisées à travers la rédaction de publications dans des journaux scientifiques internationaux et la présentation de ses travaux dans des conférences internationales.

Pour des batteries performantes, sûres, et à longue durée de vie : compréhension du rôle d'un additif dans les électrolytes liquides

Le compromis entre performance, vieillissement et sécurité reste un enjeu majeur pour les batteries Li-ion [1]. En effet, l’intégration de certains additifs dans l’électrolyte de 3e génération vise à retarder ou atténuer les conséquences de l’emballement thermique, réduisant ainsi les risques d’incendie ou d’explosion. Toutefois, cette approche peut avoir des effets négatifs sur d’autres paramètres clés, tels que la conductivité ionique [2,3]. Ainsi, cette thèse propose d’étudier les effets couplés de ces additifs afin de mieux comprendre et, potentiellement, prédire leur impact sur chaque indicateur.

Au début de ce travail, un additif sera sélectionné pour étudier son rôle au sein d’une chimie de type NMC 811/Gr-Si et d’un électrolyte liquide de 3e génération, en termes de performance, de stabilité à long terme et de sécurité. L’additif sera choisi sur la base de l’état de l’art et d’une analyse post-mortem de cellules commerciales représentatives du marché actuel. Parallèlement, des cellules commerciales neuves de quelques Ah seront utilisées. Celles-ci seront équipées d’une électrode de référence, d’une mesure de température interne et de la conductivité ionique de l’électrolyte. Ces cellules seront ensuite activées avec l’électrolyte sélectionné, à différentes concentrations d’additif. La performance électrochimique, associée à une caractérisation chimique et morphologique des matériaux présents, sera étudiée. Les principaux paramètres de sécurité (stabilité thermique, dégagement de gaz réducteurs, O2, énergie dégagée, inflammabilité de l’électrolyte) de ces cellules neuves seront mesurés à différentes concentrations d’additif. L’instrumentation interne, notamment l’électrode de référence, sera également utilisée de manière innovante pour étudier l’apparition de l’emballement thermique dans ces conditions.

Une campagne complète de vieillissement sera réalisée sur une période maximale d’un an. À intervalles réguliers, un échantillonnage des cellules sera étudié afin de caractériser l’impact du vieillissement sur les changements chimiques, électrochimiques et morphologiques, ainsi que sur les paramètres de sécurité clés. Les mécanismes les plus importants, ainsi que des lois simplifiées régissant la sécurité en fonction de la quantité d’additif et du vieillissement, seront proposées.

[1] Batteries Open Access Volume 9, Issue 8, August 2023, Article number 427
[2] Journal of Energy Storage 72 (2023) 108493
[3] Energy Storage Materials 65 (2024) 103133

Optimisation numérique du design des organes de sécurité internes d'accumulateurs de batterie en fonction de la chimie

L’emballement thermique (Thermal runnaway TR) d’un accumulateur élémentaire du pack batterie est l’élément clef pouvant donner suite à divers problèmes de sécurité comme l’incendie ou l’explosion de gaz, mettant en cause les personnes et les biens. Plusieurs organes de sécurité permettent de prévenir et/ou de réduire les conséquences de l’emballement thermique , dont le PTC (positive Temperature Coefficient) visant à limiter le courant de court-circuit, le CID (Current Interrupt Device) visant à déconnecter les bornes externes des éléments actifs internes ainsi que l'évent visant à dépressuriser le godet. La pression interne de gaz au sein du godet est l'actionneur principal de ces éléments. Cependant, la génération de gaz dépendant grandement de la chimie retenue, ces organes de sécurité doivent désormais être optimisés pour les nouvelles générations de batterie.

Dans cette thèse, nous souhaitons mettre en place une méthodologie pour le dimensionnement par simulation numérique des organes de sécurité de cellule de batterie, incluant l’ensemble des caractérisations à l’échelle du matériau mais également en conditions d’essais abusifs. Cette thèse s’attachera donc à travailler sur les aspects numériques et expérimentaux en parallèle, en interaction avec plusieurs laboratoires du département.

Effet de la radiolyse de l’eau sur le flux d’absorption d’hydrogène par les aciers inoxydables austénitiques en réacteur nucléaire à eau pressurisée

Dans les réacteurs nucléaires à eau pressurisée, les éléments constitutifs du cœur sont exposés à la fois phénomènes de corrosion en milieu primaire, de l’eau pressurisée sous 150 bar et 300 °C environ, et à un flux neutronique. Les aciers inoxydables du cœur subissent des dommages dus à la combinaison du bombardement neutronique et de la corrosion. De plus, la radiolyse de l’eau peut impacter les mécanismes et cinétiques de corrosion, la réactivité du milieu et a priori les mécanismes et cinétique d’absorption d’hydrogène par ces matériaux. Ce dernier point, non étudié encore, peut s’avérer problématique car l’hydrogène en solution solide dans l’acier peut conduire à la modification (et la dégradation) des propriétés mécaniques de l’acier et induire une fissuration prématurée de la pièce. Cette thèse très expérimentale sera centrée sur l’étude de l’impact des phénomènes de radiolyse sur les mécanismes de corrosion et de prise d’hydrogène d’un acier inoxydable 316L exposé au milieu primaire sous irradiation. L’hydrogène sera tracé par le deutérium, et l’irradiation neutronique simulée par irradiation électronique sur accélérateurs de particules. Une cellule perméation existante sera reconfigurée pour permettre de mesurer in operando par spectrométrie de masse le flux de perméation de deutérium à travers un échantillon exposé au milieu primaire simulé en conditions de radiolyse. La distribution de l’hydrogène dans le matériau, ainsi que la nature des couches d’oxydes formées, seront analysées finement à l’aide des techniques de pointe disponibles au CEA et dans les laboratoires partenaires. Le(a) doctorant(e) devra in fine (i) identifier les mécanismes en jeu (corrosion et entrée d’hydrogène), (ii) en estimer les cinétiques et (iii) modéliser l’évolution du flux d’hydrogène dans l’acier fonction de l’activité de la radiolyse.

Simulation numérique polycristalline du comportement mécanique des gaines des crayons combustibles des réacteurs à eau pressurisée

Les crayons combustibles des réacteurs nucléaires à eau pressurisée sont constitués de pastilles d’oxyde d’uranium empilées dans des tubes en alliages de zirconium. En réacteur, ces matériaux subissent des sollicitations mécaniques conduisant à leur déformation irréversible. Afin de garantir la sureté et augmenter la performance des réacteurs, ces déformations doivent être modélisées et prédites de la façon la plus précise possible. De façon à encore améliorer la prédictivité des modèles, le caractère polycristallin de ces matériaux ainsi que les mécanismes physiques de déformation doivent être pris en compte. C’est l’objectif de cette étude qui consiste à développer un modèle numérique multi-échelle à base physique de la gaine des crayons combustible.
Le comportement mécanique des matériaux métalliques est généralement modélisé en considérant ceux-ci comme homogènes. Or, les phénomènes de plasticité cristalline à l’échelle des grains ainsi que le caractère polycristallin de ces matériaux pilotent au premier ordre leur comportement. Afin de prendre en compte leur caractère hétérogène, des modèles polycristallins, auto-cohérents en champ moyen, basés sur la théorie de l’homogénéisation des matériaux hétérogènes sont utilisés depuis de nombreuses années. Récemment, un modèle polycristallin, développé dans un cadre linéaire et isotherme, a pu être couplé à des calculs par éléments finis 1D axisymétriques pour simuler la déformation des gaines en réacteur. Un historique de chargement mécanique complexe, imitant les sollicitations subies par la gaine, a pu être simulé.
L’objectif de ce travail de thèse est d’étendre le domaine d’application de ce modèle notamment en l’appliquant à un cadre non-linéaire afin de simuler des sollicitations à forte contrainte, de l’étendre à des sollicitations anisothermes mais également de réaliser des simulations par éléments finis en 3D avec en chaque élément et chaque pas de temps une simulation par le modèle polycristallin. Ces développements théoriques et numériques seront finalement appliqués à la simulation du comportement des crayons combustibles en situation de rampe de puissance grâce à son intégration à une plateforme logiciel utilisée pour des applications industrielles. Cette approche permettra de mieux évaluer les marges disponibles pour faire fonctionner le réacteur de façon plus flexible, permettant ainsi de s’adapter à l’évolution du mix énergétique et cela en toute sécurité.

Modélisation chimie-mécanique du couplage entre carbonatation, corrosion des armatures et fissuration d’un milieu cimentaire

La corrosion des armatures est une des principales causes de dégradation prématurée des infrastructures en béton, y compris dans le domaine nucléaire où le béton est largement utilisé dans les enceintes de confinement et les structures de stockage de déchets. La carbonatation due à la pénétration du CO2 dans le béton entraîne une baisse du pH de la solution porale, favorisant la corrosion des armatures. Cette corrosion entraine la formation de produits expansifs pouvant provoquer la fissuration du matériau. Le travail de thèse, proposé dans le cadre d’une collaboration au sein d’un projet européen entre le CEA de Saclay, l'École des Mines de Paris - PSL et l'IRSN, vise à développer un modèle numérique pour simuler ces phénomènes. Le modèle combine un code de transport réactif (Hytec) et un code d'éléments finis (Cast3M) pour étudier les effets locaux de la corrosion par carbonatation sur la fissuration du béton. Ce projet s’appuiera sur des travaux expérimentaux réalisés en parallèle permettant de recueillir des données pour identifier les paramètres et valider le modèle. La première partie du travail se concentrera sur la modélisation de la carbonatation des matériaux cimentaires en conditions insaturées, tandis que la deuxième portera sur la corrosion des armatures due à la baisse de pH induite par cette carbonatation. Le modèle décrira la croissance des produits de corrosion et leur expansion induisant des contraintes dans le béton et une possible microfissuration.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multi-physiques et multi-échelles. La thèse sera réalisée principalement au CEA de Saclay et à l'École des Mines de Paris – PSL (Fontainebleau).

Physique des matériaux pérovskites pour la radiographie médicale : étude expérimentale du gain de photoconduction

La radiographie est la modalité d’imagerie médicale la plus utilisée. Elle sert à établir des diagnostiques, à suivre l’évolution de pathologies et à guider certaines interventions chirurgicales.
L’objectif de cette thèse est d’étudier un matériau semi-conducteur de la famille des pérovskites pour la conversion directe des rayons X en signal électrique. L’intégration de ce matériau dans des dispositifs imageurs permettra d’améliorer la résolution spatiale des radiographies et d’augmenter le signal, donc de mieux traiter les patients. Les prototypes d’imageurs X fabriqués au CEA permettent déjà d’obtenir des images radiographiques mais leur performances sont limités par l’instabilité temporelle du courant dans le matériau détecteur.
Votre travail consistera à étudier théoriquement et expérimentalement les mécanismes responsables du gain de photoconduction et de la dérive du photocourant dans des couches pérovskites épaisses. Pour cela vous devrez adapter les bancs de caractérisations electro-optiques de notre laboratoire et analyser les données collectées. Vous aurez également l’opportunité de réaliser des caractérisations avancées dans le cadre de collaborations avec des laboratoires spécialisés en France et à l’étranger. Les résultats de cette thèse permettront d’avancer dans la compréhension du matériau et de guider son élaboration pour réaliser des imageurs X performants.

Top