Modélisation multiéchelle de la réponse magnétique de matériaux hétérogènes

La dépendance spectrale de la perméabilité des matériaux magnétiques, que ce soit dans les matériaux composites ou massifs, reste un sujet complexe, en raison des différentes échelles des phénomènes impliqués. Des modèles analytiques approximatifs sont souvent utilisés pour décrire la réponse en fréquence des matériaux magnétiques, notamment pour améliorer leurs performances dans des domaines comme l’électronique de puissance. Des résultats récents ont montré que des codes de micro-magnétisme permettent maintenant de prédire la réponse d’un ensemble de nanoparticules couplées, ou d’une particule d’un volume représentatif des matériaux en question. Cette thèse vise à utiliser ces outils pour améliorer les modèles analytiques existants. Une inclusion baignant dans un champ effectif sera le paradigme à partir duquel la structure en domaine et la réponse spectrale de la particule seront calculées en utilisant un code de micro-magnétisme. Les matériaux étudiés incluent des particules sphériques ou à fort rapport de forme (oxydes magnétiques, pétales ferromagnétiques) à concentration variable, allant des milieux dilués aux matériaux massifs. Des pistes seront ainsi dégagées pour optimiser la microstructure des matériaux, en vue de meilleures performances dans des applications comme l’électronique de puissance et les composants hyperfréquences. A cet effet, le CEA offre un environnement de calcul scientifique avec des ressources HPC, ainsi que des capacités pour l’élaboration d'échantillons et les caractérisations magnétiques statiques et dynamiques. A l’issue de ce travail, le candidat aura acquis une très bonne maîtrise des relations microstructure-propriétés décrites par une approche numérique appliquées aux matériaux magnétiques. Plus généralement, cette démarche est en pleine expansion dans le domaine des matériaux ("materials par design", ou conception numérique des matériaux).

Développement et étude d'un matériau composite laminé intégrant des nanoTubes de carbone pour application en réservoirs cryogéniques

L'utilisation de matériaux composites dans le domaine spatial a conduit à de grandes améliorations de poids. Pour continuer à réaliser un gain de poids significatif, le réservoir cryogénique composite est la prochaine application technologique à atteindre en remplaçant les réservoirs d'ergols cryogéniques en alliage métallique actuels. Les matériaux composites à matrice organique renforcée plus légers (au moins aussi performants d'un point de vue mécanique, thermique, chimique et de résistance à l'inflammation) sont une cible réaliste à atteindre qui a été explorée ces dernières années. De nombreuses approches de recherche tendent à répondre à ce verrou technologique, mais les potentialités des nanotubes de carbone (NTC) en termes de propriétés mécaniques et physiques, doivent être explorées plus en profondeur.

Une première phase d'évaluation de l'intérêt des NTC pour les applications spatiales (collaboration CNES/CEA/I2M/CMP Composite) a été menée afin d'associer des NTC à une matrice cyanate-ester dans des matériaux composites stratifié suivant trois procédés et protocoles de développement de composites stratifiés : (i) le transfert de mats de NTC alignés par pressage à chaud, (ii) la dispersion de NTC enchevêtrés mélangés à de la résine, ou (iii) la croissance de nanotubes alignés directement sur le pli sec. Connaissant les sollicitations mécaniques et thermiques, l'objectif est de démontrer l'efficacité des NTC et l'influence de leurs caractéristiques sur la tolérance aux dommages du matériau apportée par la fonctionnalisation des NTC et consiste à retarder le processus de fissuration du composite à proximité de la couche de NTC et ainsi à bloquer la percolation du réseau de fissuration qui conduit à la perte d'étanchéité. Pour le procédé de développement privilégié identifié, l'objectif de ce travail doctoral est désormais de consolider la fonctionnalisation du matériau par des NTC (forme, densité, etc.) et la compréhension du comportement mécanique (à température ambiante et à basse température) pour le développement du matériau feuilleté intégrant des NTC.
Connaissant l'application finale potentielle comme réservoir cryogénique ou pour l'amélioration de la durabilité des matériaux structuraux dans une double application, des essais pertinents seront réalisés pour démontrer l'impact en termes de développement de dommages et d'étanchéité par rapport au même matériau sans NTC.

Etude des propriétés thermomécaniques des écoulements d'hydrogène solide

Le Département des Systèmes Basses Températures (DSBT) de l’IRIG développe plusieurs thématiques de recherche autour de l’hydrogène solide cryogéniques et ses isotopes. Les applications de cette recherche vont de la production de cibles d’hydrogène solide micrométriques renouvelables pour la génération de protons de forte énergie pour l'accélération laser-plasma, à la formation et l’injection de glaçons d’hydrogène de taille millimétrique ou centimétrique pour l’alimentation et le contrôle du plasma dans les réacteurs de fusion par confinement magnétique ou inertiel. Une problématique transverse à ces applications réside dans la connaissance fine des propriétés mécaniques de l'hydrogène solide, que cela soit pour mieux comprendre la physique d’extrusion et de production des cibles ou celle de la formation et de l’accélération des glaçons pour leur injection dans les plasmas de fusion.
Le sujet de cette thèse se focalise sur l’étude de l’extrusion de l’hydrogène solide sous pression. Sur cette technologie, le DSBT développe depuis plus de 10 ans plusieurs cryostats permettant la production de ruban d’hydrogène solide, dont la taille varie de quelques millimètres à quelques dizaines de micromètres, extrudés à des vitesses de quelques millimètres par seconde.
L’axe principal de recherche est une meilleure compréhension des mécanismes d’extrusion pour permettre le développement d’outils prédictifs numériques de conception de système d’extrusion. Cette thèse expérimentale reposera sur de la rhéométrie cryogénique basée sur un rhéomètre capillaire et/ou une expérience de couette développée au cours d’une précédente thèse. Cette étude se fera en collaboration avec le Laboratoire de Rhéologie et Procédés du l’Université Grenoble Alpes.

Vers une technologie piézoélectrique éco-innovante, durable et fiable

Vous recherchez un sujet de thèse à la frontière entre éco-innovation et high-tech… ce sujet est alors pour vous !

L'objectif central de cette thèse est de réduire l'empreinte environnementale de la technologie piézoélectrique (PZE) appliquée aux micro-actionneurs/capteurs, tout en préservant des niveaux optimaux de performances électriques et de fiabilité. Actuellement, la technologie PZE repose sur l'utilisation du plomb, notamment le matériau PZT (Pb(Zr,Ti)O3), ainsi que des électrodes telles que le Pt, Ru, Au, et des éléments dopants comme le La, Mn, Nb pour optimiser les propriétés piézoélectriques et les performances électriques. Ces matériaux, en plus de leur coût écologique significatif, font face à des pénuries avérées ou imminentes.

Dans le contexte de la nécessaire frugalité liée à la transition énergétique, cette thèse se positionne comme une exploration des technologies microsystèmes plus respectueuses de l'environnement et durables. Les travaux de recherche visent à créer un abaque à trois entrées, évaluant l'empreinte écologique, les performances électromécaniques et la fiabilité des technologies existantes (avec plomb) par rapport à celles en cours de développement (sans plomb). Pour atteindre ces objectifs, le doctorant utilisera des Analyses de Cycles de Vie (ACV), des mesures électromécaniques et des essais de fiabilité (tests accélérés de vieillissement).

Cette recherche interdisciplinaire englobera des domaines tels que l'écoconception, la science des matériaux/interfaces et les procédés de fabrication microélectroniques. Le doctorant bénéficiera du soutien des laboratoires de ses encadrants, spécialisés dans les procédés de fabrication/intégration de microsystèmes, ainsi que dans la caractérisation électrique et la fiabilité. La collaboration avec la cellule « éco-innovation » du CEA-Leti enrichira également les ressources disponibles pour la réalisation de ces travaux.

Etude du comportement d'un composite CMC en température par essais in situ en tomographie X

Le sujet proposé concerne l’étude du comportement mécanique d’un matériau composites à matrice céramique de type oxyde/oxyde en température (jusqu’à 1000°C). L’originalité du sujet est l’utilisation de la tomographie X in situ pour accéder d’une part à la déformation macroscopique des éprouvettes testées et d’autre part aux mécanismes d’endommagement à l’échelle microscopique qui caractérisent ce type de matériaux dit « endommageables ».
Cette technique a été développée à température ambiante lors d'une thèse précédente : il s'agit ici de l'appliquer en température et sur des sollicitations plus complexes (eg traction-torsion). Il s'agira également de proposer des développements au protocole d'analyse par
corrélation d'image volumique existant.

Moniteur de Faisceau en Diamant pour la Thérapie FLASH

L'optimisation de la dose délivrée à la tumeur nécessite des techniques de traitement avancées. Une approche prometteuse consiste à délivrer la dose en utilisant l'irradiation à très haut débit de dose (Ultra High Dose Rate – UHDR ou radiothérapie FLASH), avec l'optimisation temporelle comme stratégie clé. Des études récentes ont mis en évidence l'efficacité de l'irradiation FLASH utilisant des électrons, montrant des capacités de destructions tumorales similaires à celles obtenues avec une irradiation conventionnelle mais avec un impact réduit sur les tissus sains. Pour exploiter pleinement ce potentiel, une nouvelle approche consistera à utiliser des faisceaux innovants, tels que les faisceaux d'électrons de haute énergie et à hauts débits de dose instantanés et présentant des doses par impulsion plusieurs ordres de grandeur supérieurs à ceux produits par les sources d’irradiation conventionnelles. Ces faisceaux prometteurs présentent un défi majeur pour leur monitoring et mesure, principalement en raison du débit de dose élevé pour lequel les systèmes de mesure actuels ne sont pas prévus de fonctionner.
Le Laboratoire de Capteurs et Instrumentation pour la Mesure (CEA-List) collaborera avec l'Institut Curie dans le cadre du projet FRATHEA. Nous proposons de développer un nouveau moniteur faisceau à base de diamant, connecté à une électronique dédiée, afin d'obtenir des mesures précises de la dose et de la forme des faisceaux pour des faisceaux d'électrons et de protons à haute énergie et haut débit de dose. Des techniques expérimentales interdisciplinaires, incluant la croissance de diamants, la microfabrication de dispositifs, la caractérisation des dispositifs sous sources radioactives et la caractérisation finale avec des faisceaux d'électrons et protons, seront utilisées pour le prototypage et l'évaluation du moniteur à faisceau en diamant.
Dans le cadre du projet FRATHEA, le doctorant travaillera sur les tâches suivantes :
· Croissance de structures de diamants monocristallin (scCVD) optimisées
· Caractérisation des propriétés électroniques des matériaux de diamant synthétisés
· Estimation des caractéristiques de réponse à la dose d'un prototype simplifié (brique élémentaire)
· Fabrication d'un moniteur de faisceau pixelisé
· Participation aux temps de faisceaux à l'Institut Curie pour les tests des dispositifs avec des faisceaux pré-cliniques
Compétences requises :
· Solide base en physique des semi-conducteurs et instrumentation
· Connaissance des détecteurs de rayonnement et des interactions rayonnement-matière
· Capacité à travailler efficacement en équipe et à faire preuve de rigueur technique dans les mesures
Compétences supplémentaires :
· Connaissances en électronique, y compris le traitement du signal, les amplificateurs, les oscilloscopes, etc.
· Familiarité avec la fabrication de dispositifs
· Expérience antérieure de travail avec des matériaux en diamant (atout mais pas obligatoire)
Profil :
· Niveau Master (M2) ou école d'ingénieur, spécialisation en mesures physiques ou instrumentation
Durée du doctorat : 3 ans
Date de début : Dernier semestre de 2025
Contact :

Michal Pomorski : michal.pomorski@cea.fr
Guillaume Boissonnat: guillaume.boissonnat@cea.fr
m.

Modélisation/Simulation de la synthèse de revêtements anti-corrosion par procédé MOCVD pour la production d’énergie décarbonée

La durabilité des matériaux utilisés dans de nombreux domaines de production d’énergie est limitée par leur dégradation dans l’environnement de fonctionnement, environnement très souvent oxydant et à haute température. C’est notamment le cas des Electrolyseurs à Haute Température (EHT) pour la production d’hydrogène "vert" ou les gaines des combustibles des réacteurs nucléaires pour la production d’électricité. Afin d’améliorer la durée de vie de ces installations et ainsi préserver les ressources, des revêtements anti-corrosion peuvent/doivent être appliqués. Un procédé de synthèse de revêtements par voie vapeur réactive avec des précurseurs organométalliques liquides (DLI – MOCVD) apparait comme un procédé très prometteur.
L’objectif de cette thèse est de modéliser et de simuler le procédé de synthèse de revêtement par DLI-MOCVD pour les deux applications proposées ci-dessus. Les résultats des simulations (vitesse de déposition, composition du dépôt, homogénéité spatiale) seront comparés aux résultats expérimentaux réalisés sur des réacteurs « pilote » de grande échelle au CEA afin d’optimiser les paramètres d’entrée du modèle. A partir de ce dialogue simulation CFD/expériences, les conditions optimales de dépôt sur un composant échelle 1 seront proposées. Un couplage simulations CFD/Machine Learning pour accélérer le changement d’échelle et l’optimisation des dépôts à l’échelle 1 sera développé.

Amélioration des modèles de fissuration - Application aux matériaux vitrocéramiques sollicités par auto-irradiation

La vitrification des déchets nucléaires est une solution actuellement retenue pour le stockage des déchets nucléaires. Les matériaux vitrocéramiques, envisagés pour cette application, sont constitués d’une matrice de verre et d’inclusions de phases cristallines. Riches en éléments radioactifs, ces inclusions subissent une auto-irradiation ayant pour conséquence leur gonflement, susceptible d’engendrer une fissuration de la matrice de verre. Il est nécessaire de connaitre le taux d’inclusions maximal en dessous duquel le matériau ne fissure pas. Une étude expérimentale sur matériaux radioactifs, élaborés et suivis au court du temps, coûte excessivement cher et le développement d’une approche numérique pourrait permettre de mieux cibler les matériaux à étudier.
Suite aux travaux de thèse de Gérald Feugueur sur le sujet ayant mis en évidence une difficulté des modèles actuels à dissocier initiation et propagation des fissures, l’objectif principal est ici de développer et tester un modèle de champ de phase amélioré intégrant un critère de nucléation de fissure indépendant de l’élasticité, basé sur des modèles régularisés de plasticité adoucissante. L’implémentation du modèle sera réalisée en utilisant la méthode des éléments finis (code FEniCS) et une méthode alternative utilisant les transformées de Fourier (code AMITEX). En complément d’une validation croisée, l’implémentation la plus efficace sera retenue pour une application à des microstructures 3D de grande taille. Des échanges étroits avec le CEA Marcoule permettront de caractériser la microstructure des matériaux et une expérience en cours devrait permettre d’analyser la fissuration potentielle de ces matériaux sous auto-irradiation.

Modélisation de la capture de particules par des mousses aqueuses

Les mousses aqueuses constituent un moyen de protection efficace contre la détonation d'engins explosifs. En effet, utilisées en recouvrement de ce type de menace, elles réduisent significativement le souffle et capturent efficacement les particules micrométriques pouvant être émises. La modélisation de ces phénomènes dans un code multiphasique est ainsi d'importance pour pouvoir traiter une grande variété de cas complexes. Plusieurs thèses sur le sujet ont abouti à un modèle reproduisant convenablement l'atténuation du souffle mais la modélisation de la capture des particules est encore à parfaire.

La thèse proposée prend la suite directe de la dernière réalisée sur le sujet. Celle-ci avait abouti à une modélisation de la trainée des particules dans la mousse qui est encore perfectible au niveau de sa formulation et dont le champ d'application reste limité. L'objectif de la thèse est donc de proposer un nouveau modèle pouvant être intégré à un code de simulation multiphasique et permettant de restituer la capture de particules micrométriques par une mousse aqueuse. Pour cela, le doctorant pourra s'appuyer sur une ré-exploitation des données expérimentales existantes, des simulations détaillées à l'échelle de la particule. Le doctorant pourra également réaliser de nouvelles expériences élémentaires si cela s'avérait nécessaire.

Au cours de la première année, l'étudiant réalisera une étude bibliographique, se familiarisera avec le code de simulation multiphasique et réexploitera les données expérimentales existantes. Grâce à cela, il proposera un programme de travail qu'il appliquera en deuxième année. Ce programme pourra comprendre des simulations détaillées à l'échelle de la particule. En dernière année, le doctorant exploitera les résultats dans le but d'établir et d'implémenter un nouveau modèle qu'il validera grâce aux données expérimentales.

Dosimétrie radiologique des accidents de grande échelle : utilisation de la spectroscopie RPE pour le tri de la population par la mesure d'écrans de smartphones.

Lors d’une urgence radiologique de grande ampleur impliquant des sources d’irradiation externe, il est nécessaire de disposer de méthodes permettant d’identifier, parmi la population, les personnes ayant été exposées et nécessitant une prise en charge prioritaire.A ce jour, il n’existe pas de méthodes opérationnelles permettant un tel tri. Les verres des écrans tactiles des smartphones gardent en« mémoire » la trace d’une irradiation aux rayonnements ionisants par le biais de la formation de défauts dits « radio-induits ». La mesure et la quantification de ces défauts ponctuels, notamment par spectroscopie à résonance paramagnétique électronique (RPE),permet d’estimer la dose déposée dans le verre et donc d’estimer l’exposition associée à l’irradiation. Le travail de thèse proposé ici s’intéresse notamment aux verres alkali-aluminosilicates utilisés dans les écrans tactiles des téléphones portables qui sont à ce jour les meilleurs candidats pour développer de nouvelles capacités de mesure dans le contexte de l’accident impliquant un grand nombre de victimes.

Nous nous concentrerons en particulier sur l'identification des défauts ponctuels en fonction du modèle de verre utilisé dans les smartphone par simulation des spectres RPE afin d'optimiser la méthode proposée de dosimétrie.

Top