Comportement mécanique de cellules Li-Ion de quatrième génération, étude à l’échelle de la microstructure
La course à l’augmentation de la densité d’énergie des batteries Li-ion conduit à envisager des batteries à électrolyte non plus liquide mais solide. A cet égard, les électrolytes à base de soufre comme les argyrodites sont d’un grand intérêt du fait de leur conductivité ionique élevée et de leurs propriétés mécaniques permettant une mise en forme par simple pressage. Sous l’effet des cycles de lithiation /délithiation, les particules actives de silicium mélangées à cet électrolyte solide sont à l’origine de variations de volumes susceptibles d’endommager l’électrode et réduire la durée de vie. C’est pourquoi les batteries à électrolyte solide sulfure ne cyclent correctement que maintenues sous pression. L’objectif de ce travail de thèse est donc de modéliser ces phases de charge – décharge de la batterie à l’échelle de microstructures représentatives de ces nouvelles électrodes à électrolyte solide. A l’échelle des particules de silicium, le travail consistera à formuler un modèle de lithiation-délithiation en s’appuyant sur des travaux théoriques antérieurs et par comparaison aux données expérimentales disponibles. Puis des modèles 3D de microstructures d’électrodes constituées d’un électrolyte solide de type argyrodite et de particules de silicium seront établis en s’appuyant sur les caractérisations existantes (images MEB). Enfin sera mis en œuvre le modèle mécanique microscopique de lithiation - délithiation sur ces modèles de microstructures en étudiant en particulier les effets du chargement mécanique externe sur l’intensité des interactions mécaniques à l’échelle de la microstructure et les zones de localisation potentielles de l’endommagement. Ces résultats de simulation seront comparés aux mesures disponibles (mesures de déformations macroscopiques et locales).
Ces travaux seront réalisés au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) en étroite collaboration avec les équipes du Laboratoire d'Innovation pour les Technologies des Energies nouvelles et les Nanomatériaux (LITEN) du CEA Grenoble.
Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.
Modélisation du flux d’imbibition en accident grave par expérimentation à effets séparés
L’énergie nucléaire est un des piliers de la transition énergétique car elle est faiblement carbonée. Elle nécessite des études de sûreté poussées, en particulier sur le sujet des accidents nucléaires graves hypothétiques. Ces scénarios postulent la fonte du cœur et la formation d’un corium (magma de matériaux radioactifs fondus). La compréhension du comportement du corium est un élément clef de la sûreté.
A l’institut IRESNE du CEA Cadarache, l’installation MERELAVA permet d’étudier une stratégie de mitigation d’accident par aspersion du corium par le haut. Un bain de corium prototypique (comprenant de l’uranium appauvri) est refroidi par aspersion d’eau, dans des conditions réalistes. Ce dispositif permet d’étudier les interactions complexes entre le corium, l’eau et le béton sacrificiel situé dessous.
Dans ce cadre, le phénomène d’imbibition joue un rôle central dans le refroidissement du corium. Lors de l’aspersion, la croûte solidifiée se fissure, l’eau s’infiltre dans le réseau de fissures et s’évapore, ce qui augmente significativement le flux de chaleur extrait par rapport à un mécanisme de conduction. Pourtant, les modèles actuels décrivent mal ce mécanisme et peinent à prédire son impact ; en raison notamment du caractère fortement multi-physique du phénomène.
Cette thèse vise à étudier l’imbibition via des expériences dédiées sur MERELAVA qui permettront de caractériser la croûte formée et en mesurant le flux d’imbibition sur matrices imprimées en 3D représentatives. L’objectif est d’améliorer le modèle physique existant, dont les résultats seront comparés à des données expérimentales complexes. La thèse se déroulera au Laboratoire d’études et d’expérimentation pour les accidents graves de l’institut IRESNE (CEA Cadarache). Le candidat devra maîtriser la mécanique des fluides et la thermique.
Quel couplage mécanique-thermique pour les transitoire rapides ? Evaluation des apports de la Thermodynamique des Processus Irréversibles
Le Laboratoire d'Analyse de la MIgration des Radioéléments (LAMIR) au sein de l'Institut de REcherche sur les Systèmes Nucléaires (IRESNE) du CEA Cadarache a développé un ensemble de méthodes de mesure pour caractériser le relâchement des produits de fission hors du combustible nucléaire lors d'un transitoire thermique. Pour ces transitoires, il est important de simuler les sollicitations mécaniques associées aux variations de température qui peuvent générer la fracturation des échantillons de combustible testés. Dans cette thèse on s'intéresse à la modélisation de transitoires de puissance accidentels hypothétiques très rapides. L'objectif de la thèse sera de mettre en œuvre une nouvelle modélisation basée sur la thermodynamique des processus irréversibles (TPI).
La première partie de la thèse consistera à conforter l'écriture du couplage thermomécanique en TPI, qui a été proposée dans notre laboratoire (https://www.mdpi.com/2813-4648/3/4/33). Il s'agira là d'une approche essentiellement analytique pour mettre en place les ordres de grandeurs des différents mécanismes mis en jeu. La seconde partie consistera à appliquer ce formalisme à des résultats expérimentaux obtenus lors d'expériences de chauffage rapide avec des faisceaux laser. Une des difficultés de la simulation numérique avec la TPI consiste à calculer simultanément les champs de température et de contrainte , et non plus successivement comme c'est le cas dans les modélisations actuelles. On commencera par une programmation 1D (sous python ou autre)que l'on améliorera au fur et à mesure. La comparaison des résultats obtenus par TPI et par la modélisation actuelle permettra d'identifier les situations où il est nécessaire de prendre en compte les couplages spécifiques à la TPI pour avoir une prédiction de bonne qualité.
Le thésard bénéficiera du soutien d'experts en thermodynamique, en mécanique et en programmation. Ses travaux donneront lieu à des publications scientifiques présentées à des conférences. De part la diversité des domaines concernés, ce sujet de thèse est une bonne ouverture pour un futur professionnel tant dans l'industrie que dans la recherche académique.
Métamatériaux légers et résistants à architectures innovantes fabriqués par fabrication additive pour environnements contraints
Les contraintes environnementales, la hausse des coûts des matières premières et la nécessité de réduire l’empreinte carbone incitent à concevoir des matériaux plus poreux, alliant légèreté et tenue mécanique. Ces matériaux répondent aux besoins de secteurs stratégiques tels que l’aéronautique, le spatial, les transports, l’énergie et les instruments de physique de haute performance.
Les métamatériaux mécaniques, constitués de structures en microtreillis obtenues par impression 3D, offrent un potentiel unique pour relever ces défis. En modulant la topologie de leurs réseaux internes, il devient possible d’atteindre des rapports rigidité/densité supérieurs à ceux des matériaux conventionnels et d’adapter leur architecture pour viser des propriétés mécaniques ou fonctionnelles spécifiques.
Cette thèse s’inscrit dans cette dynamique d’innovation. Elle vise à développer des métamatériaux métalliques ultralégers dont l’architecture est optimisée pour maximiser les performances mécaniques tout en conservant une isotropie assurant un comportement prévisible grâce aux outils classiques d’ingénierie, notamment le calcul par éléments finis, la simulation numérique et les approches multiéchelles. L’approche s’appuie sur une expertise reconnue au sein du CEA, en particulier à l’IRAMIS et à l’IRFU/DIS, dans la conception de métastructures aléatoires isotropes et leur mise en forme par fabrication additive métallique.
En combinant mécanique numérique, conception avancée, fabrication additive multiprocédés et caractérisations in situ, cette thèse vise à repousser les limites actuelles de la conception et de la fabrication de structures métalliques complexes.
Modélisation multi-échelle du maclage dans l’étain
Le maclage est un mécanisme de déformation displacif, caractérisé par une déformation continue de la matière. Bien que largement étudié pour d’autres matériaux industriels comme les alliages de titane, ce mécanisme de plasticité reste peu connu et modélisé de manière incomplète pour des structures cristallographiques complexes. Pourtant, du fait du nombre réduit de symétries de ces structures, le glissement de dislocations s’avère insuffisant pour accommoder la déformation selon certaines directions de chargement, nécessitant l’activation du maclage. C'est le cas pour l'étain, qui possède une structure tétragonale. En particulier, le maclage contribue fortement à la réponse mécanique de l'étain aux forts taux de déformations et aux faibles températures. Dans les régimes intermédiaires de température et de taux de déformation, une compétition entre plasticité par dislocations et par maclage peut s’installer, rendant cruciale la description du couplage entre ces deux phénomènes. En proposer une meilleure description permettra d’apporter un nouvel éclairage sur les données expérimentales disponibles au CEA DAM. L'objectif de la thèse est de dérouler une démarche multiéchelle, de la dynamique moléculaire jusqu'à l'échelle du milieu continu, validée sur l'expérience, pour aboutir à un modèle permettant la description du comportement de l'étain sur une large gamme de températures et de taux de déformation.
Développement d'hydrogels injectables adhésifs pour le traitement des déchirures rétiniennes
Les déchirures rétiniennes entrainant le décollement de la rétine constituent une affection oculaire grave (20 à 25 cas pour 100 000 habitants en France chaque année), nécessitant une intervention chirurgicale urgente. Les traitements actuels consistent à retirer le vitré, injecter un gaz comme agent de tamponnement, et à sceller les déchirures au laser. Cependant, cette méthode présente des restrictions pour le patient (position allongée prolongée) et peut entrainer des complications (cataractes). Des hydrogels injectables sont étudiés comme alternatives aux agents de tamponnement, mais ils ne possèdent pas de propriétés adhésives pour suturer les déchirures, et un traitement au laser reste nécessaire. Des colles chirurgicales ont également été testées, mais les adhésifs à base de cyanoacrylate sont toxiques, ceux à base de fibrine sont difficiles à utiliser dans l’œil, et les matériaux à base d’acide hyaluronique (HA) actuels manquent de stabilité et d’adhésivité.
Ce projet de thèse vise à développer un hydrogel à base de HA stérile et injectable, doté de fortes propriétés adhésives pour sceller les déchirures rétiniennes. Les propriétés visées pour l’hydrogel incluent la biocompatibilité, l’injectabilité (aiguille 30G), l’adhésivité tissulaire (1,5 à 3,7 N) et une administration rapide (en moins d’une heure). Notre équipe a précédemment mis au point un hydrogel de HA injectable à réticulation dynamique offrant une stabilité à long terme, une biocompatibilité et une transparence optique. Pour lui conférer des propriétés d’adhésion tissulaire, deux stratégies seront testées : (1) l’ajout d’acide tannique adhésif dans la formulation de l’hydrogel ou (2) le greffage de groupes adhésifs sur le squelette de HA. La biocompatibilité de l’hydrogel sera évaluée, ainsi que ses propriétés adhésives pour la réparation de la rétine en employant différents modèles précliniques.
Cet hydrogel innovant pourrait simplifier la chirurgie rétinienne, réduire les complications, et diminuer les coûts. Au-delà de la réparation rétinienne, il pourrait être applicable dans la chirurgie de la cornée et d’autres domaines médicaux.
Etude des synergies Zn, Cr, Fe, Ni sur la cristallisation au sein de verres simplifiés d’intérêt nucléaire
En France, l’utilisation de l’énergie nucléaire pour la production d’électricité génère des déchets dits de Haute Activité lors de l’étape du retraitement des combustibles usés. Ces déchets sont immobilisés en matrice vitreuse borosilicatée, dont la structure permet d’incorporer à l’échelle atomique un grand nombre d’éléments chimiques, et garantissant d’excellentes propriétés de comportement à long terme. Les enjeux à venir de la filière conduisent à une évolution des combustibles mis en œuvre dans les réacteurs, ce qui peut potentiellement induire de fait une évolution de la nature des flux à vitrifier.
Parmi les éléments à étudier, on retrouve notamment le chrome, dont la solubilité est relativement faible dans les verres borosilicatés, présentant des synergies de cristallisation avec d’autres éléments contenus dans les verres de conditionnement, comme le fer, le nickel et le zinc. Ce travail de thèse vise donc à étudier les effets synergiques de Cr, Ni, Fe et Zn sur des verres borosilicatés peralcalins simplifiés d’intérêt nucléaire, afin de mieux appréhender les affinités de cristallisation entre les différents éléments et ainsi identifier la nature et la teneur des différentes phases susceptibles de se former
Le/la doctorant/doctorante bénéficiera des compétences reconnues du laboratoire sur la formulation de verres et l’étude de leurs propriétés physico-chimiques. L’ensemble des moyens mis à disposition permettra une approche globale du sujet, en travaillant sur une thématique en plein essor et porteuse de forts enjeux industriels. L’expérience acquise pendant ce travail interdisciplinaire pourra se valoriser dans le domaine des matériaux.
FRITTAGE EN PHASE LIQUIDE TRANSITOIRE DE PASTILLES DE COMBUSTIBLES UOX ET MOX
Le sujet est en rapport avec la fabrication des combustibles UOX et MOX. Le principal objectif est d'identifier des couples de dopants permettant de former une phase liquide transitoire lors de l'étape de frittage des combustibles. Pour cela des calculs de diagrammes de phases par la méthode CALPHAD devront être réalisés, en prenant également en compte les impératifs liés à la phase d'irradiation une fois le combustible chargé en réacteur. Les couples les plus prometteurs seront ensuite évalués dans le cadre de la fabrication d'un combustible UOX et d'un combustible MOX. Les expériences à réaliser seront essentiellement: la préparation d'une matière pulvérulente, la mise en forme par pressage de cette matière sous la forme de cylindres représentatifs de pastilles de combustibles et l'étude du frittage à haute température de ces cylindres de formulation UOX et MOX. Après frittage, une étape très importante sera la caractérisation à l'échelle macroscopique et microscopique de ces pastilles. La première année de la thèse se déroulera sur le centre CEA de Cadarache au sein de l'ICPE Laboratoire des Combustibles Uranium. Les deux suivantes se dérouleront au sein de l'INB Atalante sur le site CEA de Marcoule. Le candidat travaillera au sein de deux installations uniques en Europe et pourra développer une expérience sur le travail en milieu nucléaire avec une approche très novatrices qui permettra la publication de résultats scientifiques originaux.
INFLUENCE D’UNE ETAPE DE GRANULATION MECANIQUE LORS DE LA FABRICATION D’UN COMBUSTIBLE MOX POUR RNR
Le sujet est en lien avec la fabrication du combustible MOX (U,Pu)O2 pour les réacteurs Réacteurs à Neutrons Rapide. Le procédé actuel intègre une étape de cobroyage des dioxydes d'uranium et de plutonium pour générer un milieu pulvérulent qui est ensuite mis en forme par pressage uniaxial pour générer des pastilles de combustibles cylindriques qui sont ensuite frittées à haute température. le milieu pulvérulent collecté présente une coulabilité médiocre ce qui limite les cadences de mise en forme par pressage. L'objectif de la thèse est donc d'évaluer l'impact d'une granulation mécanique du milieu pulvérulent sur la coulabilité, l'étape de pressage et la microstructure obtenue après frittage. Des tests de dissolution dans de l'acide nitrique seront également à réaliser sur certaines microstructures bien spécifiques. La thèse se basera sur un plan d'expériences formel élaboré au moyen d'un logiciel spécifique (JMP). La thèse se déroulera au sein de l'INB Atalante sur le site CEA de Marcoule. Le candidat travaillera au sein d'une installations unique en Europe et pourra développer une expérience sur le travail en milieu nucléaire avec une approche très novatrices qui permettra la publication de résultats scientifiques originaux.
Étude de l’endommagement mécanique des cellules à oxyde solide: impact des modes de fonctionnement et des profils de chargement sur la réponse électrochimique
Les cellules à oxyde solide (SOCs) sont des convertisseurs électrochimiques fonctionnant à hautes températures qui peuvent être utilisés pour produire soit de l’électricité en mode pile à combustibles (SOFC) ou de l’hydrogène en mode d’électrolyse (SOEC). Grâce à un large éventail de cas d’application, cette technologie est susceptible d’offrir de nombreuses solutions innovantes pour assurer la transition vers l’utilisation massive d’énergies renouvelables. Néanmoins, malgré tous leurs avantages, l'industrialisation à grande échelle de cette technologie reste entravée par la durabilité des SOCs. En effet, les SOCs sont limitées par de nombreux phénomènes physiques dont notamment l’endommagement mécanique des électrodes. Par exemple, la formation de microfissures dans l’électrode dite à hydrogène est une des sources majeures de dégradation. Les mécanismes mis en jeu ainsi que l’impact des microfissures sur les performances restent cependant mal connus à ce jour. Par une approche de modélisation multi-physique, cette thèse propose (i) de simuler les dommages dans la microstructure de l'électrode et (ii) de calculer leur impact sur la perte de performances. Une fois le modèle validé sur des expériences originales, une analyse de sensibilité sera conduite et des recommandations seront émises pour des électrodes optimisées.