De l’Angström au micron : un modèle d’évolution microstructurale du combustible nucléaire dont les paramètres sont calculés à l’échelle atomique
La maîtrise du comportement des gaz de fission dans le combustible nucléaire (oxyde d’uranium) est un enjeu industriel important puisque leur relâchement ou leur précipitation limite l'utilisation du combustible à forts taux de combustion. Or ces phénomènes sont fortement influencés par l’évolution microstructurale du matériau due aux défauts générés par l’irradiation (création de défauts ponctuels, agrégations de ceux-ci en cavités et bulles de gaz ou en boucles ou lignes de dislocation…). La dynamique d’amas (DA) est un modèle de type cinétique chimique permettant de décrire la nucléation/croissance des amas de défauts, leur contenu en gaz et le relâchement de celui-ci. Ce modèle est paramétré à partir de données de base calculées à diverses échelles (ab initio, potentiels empiriques, Monte Carlo). Ce modèle rend déjà compte d’expériences de recuit d’UO2 implanté en atomes de gaz de fission et a confirmé le fort impact des défauts d’irradiation sur le relâchement gazeux. L’objectif de la thèse est d’une part d’améliorer le modèle et ses paramètres d’entrée, notamment le taux de création de défauts d’irradiation, et d’autre part d’étendre son domaine de validation en le confrontant à de nombreuses expériences issues de thèses récemment soutenues au département (mesure de relâchement gazeux par recuit d’échantillons implantés via un accélérateur d’ions, observation de cavités, bulles de gaz et boucles de dislocation par microscopie électronique à transmission sur des échantillons implantés ou irradiés en pile). Vous serez donc amené à faire évoluer certains des sous-modèles constitutifs de la DA pour interpréter et simuler l’ensemble des expériences disponibles. En parallèle cela permettra d’affiner la paramétrisation du modèle.
Ce sujet de modélisation présente l’intérêt pour d’articuler à une dimension “théorique” (amélioration du modèle), ainsi que de physique numérique (évaluation par en Dynamique Moléculaire des certaines grandeurs thermo-cinétiques des défauts) une dimension “expérimentale” (interprétation d’expériences déjà réalisées, voire conception et suivi de nouvelles expériences). Ainsi, l’approche d’un ensemble varié de techniques d’observation et de mesure vous ouvriront le monde de la physique expérimentale et complèteront votre profil. Vous aurez également à animer des collaborations dans le but d’analyser les données expérimentales, de développer l’outil de calcul ou de spécifier ou réaliser des calculs atomistiques complémentaires. Vous serez accueilli au sein du Laboratoire de Modélisation du Comportement des Combustibles (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone IRESNE , CEA Cadarache) où vous pourrez bénéficier d’un environnement ouvert et riche en collaborations académiques.
Ce travail offre une position centrale et un point de vue synthétique sur la physique du combustible en irradiation. Il vous permettra de contribuer au développement de la physique numérique appliquée à une démarche multiéchelle de modélisation. Vous découvrirez en quoi des outils de simulation basés sur les données microscopiques les plus fondamentales obtenues par le calcul atomistique permettent de traiter et expliquer des situations pratiques.
Pour aller plus loin :
Skorek (2013). Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des gaz de fission dans le dioxyde d’uranium. Univ. Aix-Marseille. http://www.theses.fr/2013AIXM4376
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.
Simulations atomistiques des propriétés thermophysiques du combustible nucléaire métallique UMo
Les alliages d’uranium-molybdène UMo présentent d’excellentes propriétés thermiques et une densité en uranium supérieure à celle de combustibles céramiques tel que l’UO2. C’est notamment pour ces propriétés que l’UMo monolithique est considéré comme un combustible candidat pour les réacteurs de recherche. Il est donc crucial pour le CEA de développer de nouveaux modèles de calcul permettant d’analyser l’évolution des propriétés physico-chimiques de l’UMo en conditions d’irradiation.
Au cours de cette thèse, vous appliquerez des méthodes de calcul à l’échelle des atomes afin d’étudier les propriétés thermophysiques et thermomécaniques, ainsi que la stabilité d’amas de Xe, au sein de monocristaux d’UMo. La première étape de vos travaux consistera à poursuivre le développement de modèles de calcul à l’échelle atomique pour l’UMo entrepris au sein du laboratoire d’accueil. Ces modèles font appel à des méthodes de « machine-learning » pour le développement de potentiels interatomiques, et devront être validés par comparaison aux données expérimentales existantes pour ce matériau. Ils seront ensuite utilisés pour évaluer l’évolution en température et en fonction de l’accumulation de défauts (ponctuels et étendus) de plusieurs propriétés thermophysiques cruciales à la modélisation combustible, telles que les propriétés élastiques, la densité et l’expansion thermique, pour des propriétés thermiques telles que la chaleur spécifique et la conductivité thermique. En collaboration avec d’autres chercheurs du département, vous mettrez en forme ces résultats afin de les intégrer dans les Outils de Calcul Scientifique utilisés pour simuler le comportement des combustibles nucléaires.
Dans un second temps, vous serez en charge d’étendre la validité de vos modèles à la prise en compte de la formation de gaz de fission de type xénon en sein de monocristaux d’UMo. Vous pourrez ainsi simuler la stabilité d’amas de xénon au sein de cristaux d’UMo. Ces calculs, effectués à l’aide de méthodes de dynamique moléculaire classique, seront systématiquement comparés à des observations expérimentales obtenues par microscopie électronique à transmission.
Les résultats obtenus lors des différentes étapes de ce projet seront particulièrement innovants, et feront l’objet de publications scientifiques, ainsi que de présentations dans des conférences scientifiques internationales. L’ensemble de ces travaux vous permettrons de compléter votre formation en acquérant des compétences applicables à de nombreux domaines de la science des matériaux: calculs ab initio, ajustement de potentiels interatomiques par techniques de « machine learning », dynamique moléculaire classique, utilisation des super-calculateurs du CEA, ainsi que de nombreux éléments de physique statistique et de physique de la matière condensée, méthodes dont les membres de l’équipe encadrante sont des spécialistes.
Vous serez accueilli au sein du Laboratoire de Modélisation du Comportement des Combustibles (Institut de Recherche sur les Systèmes Nucléaires pour la production d’Energie bas carbone, IRESNE, CEA Cadarache), une équipe de recherche dynamique où vous pourrez échanger régulièrement avec les autres doctorants et chercheurs du laboratoire. Cet environnement offre de plus de nombreuses opportunités de collaborations nationales et internationales, notamment avec :
• les développeurs et utilisateurs du code de performance combustible MAIA (dédié à l’étude des combustibles pour réacteurs de recherche),
• des chercheurs expérimentateurs du département d’étude des combustibles nucléaires,
• des équipes d’autres centres du CEA (Saclay, CEA/DAM),
• ainsi que des partenaires internationaux.
Ce contexte riche et pluridisciplinaire vous permettra de vous intégrer pleinement à la communauté scientifique dédiée aux matériaux pour les sciences du nucléaire.
[1] Dubois, E. T., Tranchida, J., Bouchet, J., & Maillet, J. B. (2024). Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials. Physical Review Materials, 8(2), 025402.
[2] Chaney, D., Castellano, A., Bosak, A., Bouchet, J., Bottin, F., Dorado, B., ... & Lander, G. H. (2021). Tuneable correlated disorder in alloys. Physical Review Materials, 5(3), 035004.
Elaboration d’un combustible d’oxyde d’uranium dopé au manganèse : mécanismes de frittage et évolutions microstructurales
Ces travaux de thèse s’intègrent dans le cadre du développement de combustibles nucléaires aux propriétés améliorées par l’ajout d’un dopant, pour les réacteurs des centrales nucléaires à eau pressurisée.
Dans les réacteurs nucléaires, le combustible est constitué de pastilles de dioxyde d'uranium (UO2) empilées dans des gaines en alliage de zirconium. Ces pastilles, en contact avec la gaine, doivent résister à des conditions extrêmes de température et de pression. L’une des problématiques est de limiter les interactions chimiques pouvant avoir lieu lors de migration de produits de fission du centre vers la périphérie de la pastille avec la gaine. Un exemple représentatif de ce type de phénomène est la corrosion sous contrainte assistée par l’iode, qui peut apparaître lors de transitoires accidentels.
Une stratégie consiste à doper la céramique UO2 par un oxyde métallique afin de piloter la microstructure du matériau mais aussi de modifier son comportement thermochimique afin de limiter aussi bien la mobilité que le caractère corrosif des gaz de fission. Parmi les différents dopants possibles, l’oxyde de manganèse (MnO) constitue une option prometteuse et une alternative potentielle à l’oxyde de chrome (Cr2O3) qui est à ce jour la solution mature industriellement.
Cette thèse s’intéressera à la compréhension du rôle du manganèse sur le frittage de l’UO2, et plus particulièrement la microstructure ainsi que les propriétés finales du combustible. Elle se déroulera au centre CEA de Cadarache, au sein de l’Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (IRESNE).
Au cours de ces trois années, vous serez accueilli(e) au sein du Laboratoire dédié à l’étude des Combustibles à base d’Uranium (LCU) du Département d’étude des combustibles (DEC), en étroit lien avec le Laboratoire de Modélisation du Comportement des Combustibles (LM2C).
Ces travaux de recherche alliant expérimentation et modélisation pourront ainsi se structurer autour de trois grandes problématiques :
• l’étude de l’influence des conditions de fabrication sur la microstructure de l’UO2 dopé Mn,
• l’étude de l’impact du dopage sur la création de défauts dans l’UO2 et les propriétés associées,
• La contribution à la modélisation thermodynamique du système
U-Mn-O sur la base d’essais expérimentaux.
Vous acquerrez durant cette thèse une expérience solide dans la fabrication et la caractérisation avancée de matériaux innovants, en particulier dans le domaine des céramiques pour l’industrie nucléaire. La valorisation de vos travaux pourra s’effectuer au travers de publications, de brevets, de participations à des congrès nationaux et internationaux.
Vous développerez de nombreuses compétences techniques directement valorisables dans des domaines variés de l’industrie ou de la recherche (énergie, micro-électronique, industries chimique et pharmaceutique).
Poudres d’UO2: Caractérisation morphologique des agrégats et étude de leurs interactions par une approche combinée expérimentale / numérique
Cette thèse s’inscrit dans le cadre de l’optimisation des procédés de fabrication des combustibles nucléaires, qui reposent sur la métallurgie des poudres d’oxyde d’uranium (UO2) et de plutonium (PuO2). Ces poudres présentent une microstructure hiérarchisée, composée de cristallites formant des agrégats rigides, eux-mêmes agglomérés en structures de plus grande taille. La morphologie et les interactions entre agrégats jouent un rôle déterminant dans le comportement macroscopique des poudres — notamment leur coulabilité, leur compressibilité et leur capacité d’agglomération — et conditionnent la qualité des pastilles obtenues après pressage et frittage. Cependant, la caractérisation expérimentale de ces agrégats reste complexe et ne permet pas encore d’établir un lien prédictif entre les procédés de synthèse et les propriétés morphologiques.
L’objectif de cette thèse est de combiner des approches expérimentales et numériques pour caractériser finement les agrégats d’une poudre de référence. D’un point de vue expérimental, des techniques telles que la microscopie électronique à balayage (MEB), la mesure de surface spécifique (BET) et la granulométrie laser seront utilisées pour déterminer la taille, la rugosité et la distribution en taille des particules. En parallèle, des simulations numériques de type Discrete Element Method (DEM) seront utilisées afin de construire un jumeau granulaire fidèle aux propriétés mesurées. Ce jumeau permettra de remonter à la structure interne des agrégats, d’évaluer les forces d’adhésion interparticulaires et d’analyser les phénomènes d’agglomération et de densification en conditions contrôlées.
La thèse se déroulera au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE). L’étudiant sera affecté au Laboratoire de Développement des OCS combustibles PLEIADES (LDOP) qui est spécialiste de la simulation du comportement du combustible (de la fabrication à son comportement sous irradiation) et des méthodes numériques multiéchelles. Elle sera réalisée en collaboration avec le CNRS/LMGC de Montpellier, reconnu internationalement pour ses travaux sur les milieux granulaires, et le Laboratoire des Combustibles Uranium (LCU- CEA Cadarache), qui a une forte expérience sur la caractérisation expérimentale des poudres d’Uranium.
Le doctorant devra montrer principalement des compétences en simulation numérique et dans l’analyse physique des résultats. Il valorisera ses résultats au travers des publications et participations à des congrès et aura l’occasion d’apprendre ou de se perfectionner dans plusieurs techniques (expérimentales et numériques) réutilisables dans d’autres contextes. En particulier, les problématiques liées à la physique des milieux granulaires, qui constituent le cœur de cette thèse, présentent un intérêt industriel marqué et sont communes à de nombreux autres secteurs manipulant des poudres, tels que la pharmacie, l’agroalimentaire ou la métallurgie des poudres.
[Hebrard2004] S.Hebrard, Etude des mécanismes d’évolution morphologique de la structure des poudres d’UO2 en voie sèche, thèse de doctorat, CEA-LSG2M-COGEMA), 2004.
[Pizette2010] P. Pizette, C.L. Martin a, G. Delette, P. Sornay, F. Sans, Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces, Powder Technology, 198, 240-250, 2010.
[Tran2025] T.-D. Tran , S. Nezamabadi , J.-P. Bayle, L. Amarsid, F. Radjai , Effect of interlocking on the compressive strength of agglomerates composed of cohesive nonconvex particles, Advanced Powder Technology 36, 2025.
Modélisation Micromécanique du Comportement de Polycristaux aux Interfaces Imparfaites : Application au Combustible UO2 Irradié
Cette thèse a pour objectif d’analyser les propriétés thermomécaniques du combustible UO2, utilisé dans les réacteurs à eau pressurisée (REP), en considérant la présence de défauts microscopiques. Celle-ci se concentre plus particulièrement sur les phénomènes de décohésion intergranulaire, observés à différents stades d’évolution du combustible, notamment en amont de l’initiation et de la propagation de fissures. Cette étude vise à clarifier l’impact de la décohésion sur les propriétés locales et effectives de l’UO2 au cours de son irradiation. Pour cela, la décohésion intergranulaire est modélisée, à l’échelle locale, à l’aide de modèles d’interfaces imparfaites, assurant la continuité de la traction tout en autorisant un saut de déplacement à l'interface entre les différents grains. Ce choix permettra le développement de modèles d'homogénéisation avec des développements théoriques et numériques innovants, à même de retranscrire le comportement du combustible à très haute température, en conditions incidentelles et accidentelles. Ces travaux seront réalisés au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) en étroite collaboration avec des équipes de recherche nationales et internationales. Les outils développés contribueront à améliorer la compréhension des propriétés du combustible et à renforcer la précision et la fiabilité des modèles existants, notamment ceux intégrés dans la plateforme de simulation PLEIADES du CEA, développée en collaboration avec les industriels français du nucléaire.
Fissuration sous gradient thermique du combustible lors d’une chauffe laser: corrélation d’images, simulation et adaptation du dispositif expérimental.
Le sujet de cette thèse propose de simuler la fissuration du combustible nucléaire, constitué d'une céramique fragile, le dioxyde d'uranium, au cours d’essais de chauffe laser et de comparer par corrélation d'images résultats numériques et expérimentaux. Cette comparaison permettra d'optimiser le dispositif expérimental pour améliorer la qualité des résultats expérimentaux et aller vers une validation quantitative des modèles d'endommagement à gradient utilisés dans les simulations.
Le point de départ de ces travaux est une campagne de fragmentation de pastilles de dioxyde d’uranium par chauffe laser qui a été menée dans le cadre du doctorat d’Hugo Fuentes[1] réalisée dans l'un des laboratoires expérimentaux du l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) du CEA Cadarache (DEC/SA3E/LAMIR). Cette chauffe permet de reproduire des gradients de température représentatifs des conditions en réacteurs. Pour chaque essai, des films montrant l’évolution des fissures et l’évolution des températures en surface de pastille sont disponibles.
Ces films seront analysés par corrélation d'images [3] grâce à un logiciel interne pour déterminer des conditions aux limites optimales des simulations numériques et extraire les données utiles à la validation des modèles. Les essais seront ensuite modélisés par des modèles d'endommagement à gradient développés dans les thèses de David Siedel et Pedro Nava Soto [2]. En fonction des résultats obtenus, le doctorant pourra optimiser le dispositif et/out l'adapter pour traiter d'autres situations de fonctionnement et mener une nouvelle campagne expérimentale.
Le doctorant sera en interaction forte entre un laboratoire de simulation et un laboratoire expérimental au sein de l'institut IRESNE du CEA Cadarache . Le travail proposé est ouvert et pourra être valorisé par des participations à des conférences nationales ou internationales et l'écriture d'articles scientifiques dans des revues à fort impact.
[1] Fuentes, Hugo, Doualle, Thomas, Colin, Christian, Socié, Adrien, Helfer, Thomas, Gallais, Laurent and Lebon, Frédéric. Numerical and experimental simulation of nuclear fuel fragmentation via laser heating of ceramics. In : Proceeding of top fuel 2024. Grenoble, 29 September 2024.
[2] Nava Soto, Pedro, Fandeur, Olivier, Siedel, David, Helfer, Thomas and Besson, Jacques. Description of thermal shocks using micromorphic damage gradient models. European Solid Mechanics Conference, Lyon. 2025.
[3] Castelier Etienne, Rohmer E., Martin E., Humez B. Utilisation de la dimension temporelle pour ameliorer la
correlation d'images. 20 eme Congres Francais de Mecanique, 2011.
Développement d’un dosimètre basé sur la capture de xénon dans une zéolithe
La dosimétrie en réacteur permet de caractériser le spectre neutronique et déterminer la fluence neutronique reçue pendant une irradiation pour le suivi de la fragilisation des matériaux. Cette technique s’appuie sur l’analyse de la radioactivité de dosimètres irradiés, constitués de métaux purs ou d’alliages de compositions connues dont certains isotopes sont l’objet de réactions d’activation ou de fission.
Il existe de nombreux dosimètres répondant en-dessous de 1 keV ou au-dessus de 2 MeV, quelques-uns entre 1 MeV et 2 MeV, mais le Zr est le seul adapté au domaine énergétique compris entre 1 keV et 1 MeV. En outre, peu de dosimètres répondent avec un seuil proche de 1 MeV.
Dans ce contexte, le Xe présente non seulement une réaction intéressante déjà identifiée entre 1 keV et 1 MeV, mais dispose aussi de deux réactions proches de 1 MeV produisant deux fils ayant des périodes d’une dizaine de jours bien adaptées au cycle d’irradiation du prochain réacteur expérimental à fort flux du CEA, le réacteur Jules Horowitz (RJH).
L’idée maitresse de ce sujet de thèse serait d’utiliser des matériaux adsorbants pour fixer une masse suffisante de Xe dans un volume réduit. Des zéolithes commerciales peuvent à présent piéger jusqu’à 30% en masse de Xe lorsque soumises à seulement 1 bar de Xe à température ambiante.
La thèse consistera à réaliser un dosimètre de Xe piégé sur une zéolithe au CNRS MADIREL (déplacements fréquents à prévoir sur le campus Saint Jérôme à Marseille durant la 1ère année) et une chambre gonflée au Xe via la fabrication sur les ateliers de notre laboratoire. L’irradiation conjointe d’un dosimètre et d’une chambre dans un réacteur tel que CABRI à Cadarache permettra d’évaluer les facteurs d’auto-absorption par la zéolithe des raies gamma émises par les isotopes d’intérêt, vérifier leur mesurabilité par la plate-forme MADERE de notre laboratoire, ainsi que le vieillissement des zéolithes sous forte irradiation neutronique. Le dosimètre sera ensuite testé à plus haut flux, par exemple dans le TRIGA du JSI (déplacement d’une semaine à prévoir en Slovénie), via la collaboration CEA-JSI ininterrompue depuis 2008, afin de qualifier ce dosimètre pour le RJH.
Fort de l’acquisition de compétences dans le domaine de la mesure nucléaire, le futur docteur pourra préparer son intégration professionnelle dans les grands organismes de recherche français et étrangers ou dans des entreprises du nucléaire.
Etude expérimentale du comportement des gaz de fission dans les combustibles des Réacteurs à Neutrons Rapides irradiés à basse puissance
Avec l’émergence des nouvelles start-ups dans le domaine du nucléaire, il est primordial d’étendre la base de validation des codes de performances du combustible des Réacteurs à Neutrons Rapides (RNR) à des régimes de fonctionnement à plus faible puissance linéique, un domaine encore peu exploré.
Compte tenu des températures plus faibles atteintes dans le combustible, la microstructure induite par l’irradiation est différente de ce qui est classiquement observée à plus forte puissance linéique. Ces plus faibles températures de fonctionnement entraînent aussi une diminution du relâchement des gaz de fission (RGF) pouvant induire un gonflement gazeux significatif du combustible. De manière concomitante, les faibles températures de fonctionnement peuvent aussi entraîner une augmentation de la densité des défauts générés (dislocations) lors de l’irradiation (efficacité de recuit des défauts plus faible) impliquant une augmentation indirecte du gonflement du combustible.
Il est donc important de déterminer la densité des dislocations dans le combustible car leur rôle ambivalent montre qu’elles peuvent ralentir le relâchement des gaz par piégeage et favoriser leur stockage dans des bulles en position intragranulaire, tout en pouvant aussi faciliter leur migration si elles forment un réseau connecté.
Afin d’améliorer la compréhension des phénomènes mis en jeu et les modèles de gonflement du combustible sous irradiation, il est essentiel de disposer de résultats expérimentaux comme les densités et les tailles de bulles de GF et les densités de dislocations dans ces régimes de fonctionnement.
Le laboratoire de caractérisation et d‘études des propriétés des combustibles au sein de Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) auquel sera rattaché le doctorant est doté d’équipements de pointe dédiés aux matériaux irradiés (MET, MEB-FIB, SIMS, EPMA, DRX)lui permettant d’acquérir des compétences expérimentales pointues sur du combustible irradié. Ce travail sera réalisé en étroite collaboration avec les équipes en charge du développement des outils de calcul scientifique multiphysique de la plateforme logicielle PLEIADES.Les compétences acquises pendant toute la durée de la thèse pourront être valorisées dans un futur parcours professionnel aussi bien académique qu’industriel. Le doctorant pourra également valoriser son travail auprès de la communauté académique internationale et du monde industriel via des présentations orales et des articles à comité de lecture.
Imagerie acoustique des interfaces métal/céramique sur éléments combustibles irradiés : de la mise en œuvre à l’interprétation
Dans le contexte de l’amélioration de la performance et de la sureté des réacteurs nucléaires civils, de nombreux programmes de recherche sont conduits par le CEA en soutien aux industriels EDF et FRAMATOME, en particulier sur le comportement des éléments combustibles sous irradiation. Les éléments combustibles sont constitués d’une gaine métallique et de pastilles en céramique. Dans des situations de variations de puissance, la présence ou l’absence de jeu entre la gaine et les pastilles, et la qualité de l’accrochage entre eux en cas de contact, sont déterminants pour la tenue mécanique de l’élément (https://hal.archives-ouvertes.fr/DEN-DIR/cea-01153334v1).
Pour compléter les méthodes actuelles de caractérisations expérimentales, la faisabilité de la caractérisation de l’interface pastille-gaine par une technique non destructive d’imagerie acoustique a été étudiée et validée sur un banc d’essai en laboratoire universitaire.
Dans la continuité de cette première étude, l’objectif de la thèse est d’instrumenter un banc de mesure déjà opérationnel au CEA, dans une cellule blindée dédiée aux examens sur combustibles irradiés, pour y implanter une chaine d’imagerie acoustique.
Le travail de thèse inclut l’établissement et la mise en œuvre d’un protocole de qualification de la chaine de mesure avec acquisitions de mesures sur éléments combustibles irradiés. Une stratégie de traitement des signaux acoustiques prenant en compte la correction des effets en surface externe de gaine sera mise en place. Les caractéristiques que l’on souhaite obtenir sont la localisation axiale et azimutale des continuités ou discontinuités du contact à l’interface pastille-gaine avec des résolutions de quelques dizaines de micromètres, et la fraction surfacique des zones d’adhérence entre la gaine et le combustible, à l’échelle de quelques pastilles.
Le doctorant sera basé au sein de l’institut IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d’énergie bas carbone) au CEA Cadarache, et les travaux seront réalisés dans une installation disposant d’outils de caractérisation non destructive et destructive permettant d’observer le combustible irradié à toutes les échelles.
Ce travail pluridisciplinaire sera mené en en étroite collaboration avec une équipe de l’IES (Institut de l’Electronique et des Systèmes - CNRS - Montpellier), spécialisée dans la conception de capteurs acoustiques et de systèmes d’imagerie acoustique. En s’appuyant sur les moyens et l’expertise des équipes des deux entités CEA et IES, le doctorant ou la doctorante pourra acquérir de solides compétences dans les domaines de la modélisation, de l’instrumentation et de la mesure. Il ou elle sera amené(e) également à interagir avec les équipes de R&D d’EDF, partenaire industriel de ce projet. Les résultats seront valorisés dans des publications et communications internationales.
Comportement mécanique de cellules Li-Ion de quatrième génération, étude à l’échelle de la microstructure
La course à l’augmentation de la densité d’énergie des batteries Li-ion conduit à envisager des batteries à électrolyte non plus liquide mais solide. A cet égard, les électrolytes à base de soufre comme les argyrodites sont d’un grand intérêt du fait de leur conductivité ionique élevée et de leurs propriétés mécaniques permettant une mise en forme par simple pressage. Sous l’effet des cycles de lithiation /délithiation, les particules actives de silicium mélangées à cet électrolyte solide sont à l’origine de variations de volumes susceptibles d’endommager l’électrode et réduire la durée de vie. C’est pourquoi les batteries à électrolyte solide sulfure ne cyclent correctement que maintenues sous pression. L’objectif de ce travail de thèse est donc de modéliser ces phases de charge – décharge de la batterie à l’échelle de microstructures représentatives de ces nouvelles électrodes à électrolyte solide. A l’échelle des particules de silicium, le travail consistera à formuler un modèle de lithiation-délithiation en s’appuyant sur des travaux théoriques antérieurs et par comparaison aux données expérimentales disponibles. Puis des modèles 3D de microstructures d’électrodes constituées d’un électrolyte solide de type argyrodite et de particules de silicium seront établis en s’appuyant sur les caractérisations existantes (images MEB). Enfin sera mis en œuvre le modèle mécanique microscopique de lithiation - délithiation sur ces modèles de microstructures en étudiant en particulier les effets du chargement mécanique externe sur l’intensité des interactions mécaniques à l’échelle de la microstructure et les zones de localisation potentielles de l’endommagement. Ces résultats de simulation seront comparés aux mesures disponibles (mesures de déformations macroscopiques et locales).
Ces travaux seront réalisés au CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) en étroite collaboration avec les équipes du Laboratoire d'Innovation pour les Technologies des Energies nouvelles et les Nanomatériaux (LITEN) du CEA Grenoble.
Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.