Etude des propriétés thermomécaniques des écoulements d'hydrogène solide
Le Département des Systèmes Basses Températures (DSBT) de l’IRIG développe plusieurs thématiques de recherche autour de l’hydrogène solide cryogéniques et ses isotopes. Les applications de cette recherche vont de la production de cibles d’hydrogène solide micrométriques renouvelables pour la génération de protons de forte énergie pour l'accélération laser-plasma, à la formation et l’injection de glaçons d’hydrogène de taille millimétrique ou centimétrique pour l’alimentation et le contrôle du plasma dans les réacteurs de fusion par confinement magnétique ou inertiel. Une problématique transverse à ces applications réside dans la connaissance fine des propriétés mécaniques de l'hydrogène solide, que cela soit pour mieux comprendre la physique d’extrusion et de production des cibles ou celle de la formation et de l’accélération des glaçons pour leur injection dans les plasmas de fusion.
Le sujet de cette thèse se focalise sur l’étude de l’extrusion de l’hydrogène solide sous pression. Sur cette technologie, le DSBT développe depuis plus de 10 ans plusieurs cryostats permettant la production de ruban d’hydrogène solide, dont la taille varie de quelques millimètres à quelques dizaines de micromètres, extrudés à des vitesses de quelques millimètres par seconde.
L’axe principal de recherche est une meilleure compréhension des mécanismes d’extrusion pour permettre le développement d’outils prédictifs numériques de conception de système d’extrusion. Cette thèse expérimentale reposera sur de la rhéométrie cryogénique basée sur un rhéomètre capillaire et/ou une expérience de couette développée au cours d’une précédente thèse. Cette étude se fera en collaboration avec le Laboratoire de Rhéologie et Procédés du l’Université Grenoble Alpes.
Vers une technologie piézoélectrique éco-innovante, durable et fiable
Vous recherchez un sujet de thèse à la frontière entre éco-innovation et high-tech… ce sujet est alors pour vous !
L'objectif central de cette thèse est de réduire l'empreinte environnementale de la technologie piézoélectrique (PZE) appliquée aux micro-actionneurs/capteurs, tout en préservant des niveaux optimaux de performances électriques et de fiabilité. Actuellement, la technologie PZE repose sur l'utilisation du plomb, notamment le matériau PZT (Pb(Zr,Ti)O3), ainsi que des électrodes telles que le Pt, Ru, Au, et des éléments dopants comme le La, Mn, Nb pour optimiser les propriétés piézoélectriques et les performances électriques. Ces matériaux, en plus de leur coût écologique significatif, font face à des pénuries avérées ou imminentes.
Dans le contexte de la nécessaire frugalité liée à la transition énergétique, cette thèse se positionne comme une exploration des technologies microsystèmes plus respectueuses de l'environnement et durables. Les travaux de recherche visent à créer un abaque à trois entrées, évaluant l'empreinte écologique, les performances électromécaniques et la fiabilité des technologies existantes (avec plomb) par rapport à celles en cours de développement (sans plomb). Pour atteindre ces objectifs, le doctorant utilisera des Analyses de Cycles de Vie (ACV), des mesures électromécaniques et des essais de fiabilité (tests accélérés de vieillissement).
Cette recherche interdisciplinaire englobera des domaines tels que l'écoconception, la science des matériaux/interfaces et les procédés de fabrication microélectroniques. Le doctorant bénéficiera du soutien des laboratoires de ses encadrants, spécialisés dans les procédés de fabrication/intégration de microsystèmes, ainsi que dans la caractérisation électrique et la fiabilité. La collaboration avec la cellule « éco-innovation » du CEA-Leti enrichira également les ressources disponibles pour la réalisation de ces travaux.
Etude du comportement d'un composite CMC en température par essais in situ en tomographie X
Le sujet proposé concerne l’étude du comportement mécanique d’un matériau composites à matrice céramique de type oxyde/oxyde en température (jusqu’à 1000°C). L’originalité du sujet est l’utilisation de la tomographie X in situ pour accéder d’une part à la déformation macroscopique des éprouvettes testées et d’autre part aux mécanismes d’endommagement à l’échelle microscopique qui caractérisent ce type de matériaux dit « endommageables ».
Cette technique a été développée à température ambiante lors d'une thèse précédente : il s'agit ici de l'appliquer en température et sur des sollicitations plus complexes (eg traction-torsion). Il s'agira également de proposer des développements au protocole d'analyse par
corrélation d'image volumique existant.
Moniteur de Faisceau en Diamant pour la Thérapie FLASH
L'optimisation de la dose délivrée à la tumeur nécessite des techniques de traitement avancées. Une approche prometteuse consiste à délivrer la dose en utilisant l'irradiation à très haut débit de dose (Ultra High Dose Rate – UHDR ou radiothérapie FLASH), avec l'optimisation temporelle comme stratégie clé. Des études récentes ont mis en évidence l'efficacité de l'irradiation FLASH utilisant des électrons, montrant des capacités de destructions tumorales similaires à celles obtenues avec une irradiation conventionnelle mais avec un impact réduit sur les tissus sains. Pour exploiter pleinement ce potentiel, une nouvelle approche consistera à utiliser des faisceaux innovants, tels que les faisceaux d'électrons de haute énergie et à hauts débits de dose instantanés et présentant des doses par impulsion plusieurs ordres de grandeur supérieurs à ceux produits par les sources d’irradiation conventionnelles. Ces faisceaux prometteurs présentent un défi majeur pour leur monitoring et mesure, principalement en raison du débit de dose élevé pour lequel les systèmes de mesure actuels ne sont pas prévus de fonctionner.
Le Laboratoire de Capteurs et Instrumentation pour la Mesure (CEA-List) collaborera avec l'Institut Curie dans le cadre du projet FRATHEA. Nous proposons de développer un nouveau moniteur faisceau à base de diamant, connecté à une électronique dédiée, afin d'obtenir des mesures précises de la dose et de la forme des faisceaux pour des faisceaux d'électrons et de protons à haute énergie et haut débit de dose. Des techniques expérimentales interdisciplinaires, incluant la croissance de diamants, la microfabrication de dispositifs, la caractérisation des dispositifs sous sources radioactives et la caractérisation finale avec des faisceaux d'électrons et protons, seront utilisées pour le prototypage et l'évaluation du moniteur à faisceau en diamant.
Dans le cadre du projet FRATHEA, le doctorant travaillera sur les tâches suivantes :
· Croissance de structures de diamants monocristallin (scCVD) optimisées
· Caractérisation des propriétés électroniques des matériaux de diamant synthétisés
· Estimation des caractéristiques de réponse à la dose d'un prototype simplifié (brique élémentaire)
· Fabrication d'un moniteur de faisceau pixelisé
· Participation aux temps de faisceaux à l'Institut Curie pour les tests des dispositifs avec des faisceaux pré-cliniques
Compétences requises :
· Solide base en physique des semi-conducteurs et instrumentation
· Connaissance des détecteurs de rayonnement et des interactions rayonnement-matière
· Capacité à travailler efficacement en équipe et à faire preuve de rigueur technique dans les mesures
Compétences supplémentaires :
· Connaissances en électronique, y compris le traitement du signal, les amplificateurs, les oscilloscopes, etc.
· Familiarité avec la fabrication de dispositifs
· Expérience antérieure de travail avec des matériaux en diamant (atout mais pas obligatoire)
Profil :
· Niveau Master (M2) ou école d'ingénieur, spécialisation en mesures physiques ou instrumentation
Durée du doctorat : 3 ans
Date de début : Dernier semestre de 2025
Contact :
Michal Pomorski : michal.pomorski@cea.fr
Guillaume Boissonnat: guillaume.boissonnat@cea.fr
m.
Modélisation/Simulation de la synthèse de revêtements anti-corrosion par procédé MOCVD pour la production d’énergie décarbonée
La durabilité des matériaux utilisés dans de nombreux domaines de production d’énergie est limitée par leur dégradation dans l’environnement de fonctionnement, environnement très souvent oxydant et à haute température. C’est notamment le cas des Electrolyseurs à Haute Température (EHT) pour la production d’hydrogène "vert" ou les gaines des combustibles des réacteurs nucléaires pour la production d’électricité. Afin d’améliorer la durée de vie de ces installations et ainsi préserver les ressources, des revêtements anti-corrosion peuvent/doivent être appliqués. Un procédé de synthèse de revêtements par voie vapeur réactive avec des précurseurs organométalliques liquides (DLI – MOCVD) apparait comme un procédé très prometteur.
L’objectif de cette thèse est de modéliser et de simuler le procédé de synthèse de revêtement par DLI-MOCVD pour les deux applications proposées ci-dessus. Les résultats des simulations (vitesse de déposition, composition du dépôt, homogénéité spatiale) seront comparés aux résultats expérimentaux réalisés sur des réacteurs « pilote » de grande échelle au CEA afin d’optimiser les paramètres d’entrée du modèle. A partir de ce dialogue simulation CFD/expériences, les conditions optimales de dépôt sur un composant échelle 1 seront proposées. Un couplage simulations CFD/Machine Learning pour accélérer le changement d’échelle et l’optimisation des dépôts à l’échelle 1 sera développé.
Amélioration des modèles de fissuration - Application aux matériaux vitrocéramiques sollicités par auto-irradiation
La vitrification des déchets nucléaires est une solution actuellement retenue pour le stockage des déchets nucléaires. Les matériaux vitrocéramiques, envisagés pour cette application, sont constitués d’une matrice de verre et d’inclusions de phases cristallines. Riches en éléments radioactifs, ces inclusions subissent une auto-irradiation ayant pour conséquence leur gonflement, susceptible d’engendrer une fissuration de la matrice de verre. Il est nécessaire de connaitre le taux d’inclusions maximal en dessous duquel le matériau ne fissure pas. Une étude expérimentale sur matériaux radioactifs, élaborés et suivis au court du temps, coûte excessivement cher et le développement d’une approche numérique pourrait permettre de mieux cibler les matériaux à étudier.
Suite aux travaux de thèse de Gérald Feugueur sur le sujet ayant mis en évidence une difficulté des modèles actuels à dissocier initiation et propagation des fissures, l’objectif principal est ici de développer et tester un modèle de champ de phase amélioré intégrant un critère de nucléation de fissure indépendant de l’élasticité, basé sur des modèles régularisés de plasticité adoucissante. L’implémentation du modèle sera réalisée en utilisant la méthode des éléments finis (code FEniCS) et une méthode alternative utilisant les transformées de Fourier (code AMITEX). En complément d’une validation croisée, l’implémentation la plus efficace sera retenue pour une application à des microstructures 3D de grande taille. Des échanges étroits avec le CEA Marcoule permettront de caractériser la microstructure des matériaux et une expérience en cours devrait permettre d’analyser la fissuration potentielle de ces matériaux sous auto-irradiation.
Modélisation de la capture de particules par des mousses aqueuses
Les mousses aqueuses constituent un moyen de protection efficace contre la détonation d'engins explosifs. En effet, utilisées en recouvrement de ce type de menace, elles réduisent significativement le souffle et capturent efficacement les particules micrométriques pouvant être émises. La modélisation de ces phénomènes dans un code multiphasique est ainsi d'importance pour pouvoir traiter une grande variété de cas complexes. Plusieurs thèses sur le sujet ont abouti à un modèle reproduisant convenablement l'atténuation du souffle mais la modélisation de la capture des particules est encore à parfaire.
La thèse proposée prend la suite directe de la dernière réalisée sur le sujet. Celle-ci avait abouti à une modélisation de la trainée des particules dans la mousse qui est encore perfectible au niveau de sa formulation et dont le champ d'application reste limité. L'objectif de la thèse est donc de proposer un nouveau modèle pouvant être intégré à un code de simulation multiphasique et permettant de restituer la capture de particules micrométriques par une mousse aqueuse. Pour cela, le doctorant pourra s'appuyer sur une ré-exploitation des données expérimentales existantes, des simulations détaillées à l'échelle de la particule. Le doctorant pourra également réaliser de nouvelles expériences élémentaires si cela s'avérait nécessaire.
Au cours de la première année, l'étudiant réalisera une étude bibliographique, se familiarisera avec le code de simulation multiphasique et réexploitera les données expérimentales existantes. Grâce à cela, il proposera un programme de travail qu'il appliquera en deuxième année. Ce programme pourra comprendre des simulations détaillées à l'échelle de la particule. En dernière année, le doctorant exploitera les résultats dans le but d'établir et d'implémenter un nouveau modèle qu'il validera grâce aux données expérimentales.
Dosimétrie radiologique des accidents de grande échelle : utilisation de la spectroscopie RPE pour le tri de la population par la mesure d'écrans de smartphones.
Lors d’une urgence radiologique de grande ampleur impliquant des sources d’irradiation externe, il est nécessaire de disposer de méthodes permettant d’identifier, parmi la population, les personnes ayant été exposées et nécessitant une prise en charge prioritaire.A ce jour, il n’existe pas de méthodes opérationnelles permettant un tel tri. Les verres des écrans tactiles des smartphones gardent en« mémoire » la trace d’une irradiation aux rayonnements ionisants par le biais de la formation de défauts dits « radio-induits ». La mesure et la quantification de ces défauts ponctuels, notamment par spectroscopie à résonance paramagnétique électronique (RPE),permet d’estimer la dose déposée dans le verre et donc d’estimer l’exposition associée à l’irradiation. Le travail de thèse proposé ici s’intéresse notamment aux verres alkali-aluminosilicates utilisés dans les écrans tactiles des téléphones portables qui sont à ce jour les meilleurs candidats pour développer de nouvelles capacités de mesure dans le contexte de l’accident impliquant un grand nombre de victimes.
Nous nous concentrerons en particulier sur l'identification des défauts ponctuels en fonction du modèle de verre utilisé dans les smartphone par simulation des spectres RPE afin d'optimiser la méthode proposée de dosimétrie.
Développement de polyhydroxyuréthanes biosourcés à forte réactivité pour la substitution des isocyanates dans les polyuréthanes
Les polyuréthanes sont des matériaux thermodurcissables fortement impactant sur le plan environnemental, et sont notamment synthétisés à partir d’isocyanates, substances très dangereuses (toxiques, sensibilisantes, voire CMR pour certaines) et visées par des restrictions REACH. Dans ce contexte, les polyhydroxyuréthanes présentent plusieurs avantages : (i) plus facilement biosourçables que les PU conventionnels, (ii) leur synthèse ne fait pas intervenir d’isocyanate, mais (iii) permet au contraire la séquestration de CO2. Néanmoins, les précurseurs utilisés dans la synthèse des PHU (carbonates cycliques et amines) présentent des réactivités beaucoup plus faibles que les isocyanates, induisant des temps de réticulation actuellement incompatibles avec les températures et les cadences de production attendues pour ce type de matériau.
Plusieurs axes de recherche ont été proposés pour optimiser les cinétiques de réticulation des PHU et concernent l’identification (i) de nouveaux précurseurs carbonates cycliques et amines chimiquement substitués en positions a ou ß de la fonction réactive, et (ii) de nouveaux catalyseurs performants permettant d’activer les deux types de précurseurs utilisés dans la synthèse.
Dans ce contexte, le doctorant aura pour mission de synthétiser de nouveaux précurseurs carbonates cycliques et amines, et d’étudier leur réactivité, afin d’identifier les conditions les plus favorables pour la synthèse de PHU hautement réactifs. Les résultats acquis durant ces travaux seront ensuite analysés par des modèles d’Intelligence Artificielle symbolique développés au CEA.
Ce projet de thèse s’inscrit dans le cadre du projet PHURIOUS, financé par le PEPR DIADEM, qui prévoit de coupler des techniques de synthèse et de caractérisation haut-débit en chimie des polymères, et des outils numériques en amont (calculs DFT, dynamique moléculaire) et en aval (IA) des étapes de synthèse.
Aciers austénitiques à haute limite d’élasticité pour le nucléaire : conception numérique et étude expérimentale
La thèse s’inscrit dans un projet qui vise à concevoir de nouvelles chimies d’aciers inoxydables austénitiques pour le nucléaire qui soient spécifiquement adaptées aux conditions vues par la pièce en service et à son mode d’élaboration.
Plus précisément, elle concerne les aciers de boulonnerie obtenus par nitruration contrôlée de poudres ultérieurement densifiées par Compression Isostatique à Chaud. Les nuances actuelles présentent en effet des limitations liées à la corrosion sous contrainte, or la nitruration permet d'augmenter la quantité de chrome, ce qui a un effet bénéfique.
Il s'agit d'abord d'établir un cahier des charges et une liste de critères puis de réaliser une optimisation de composition multicritères par calculs CALPHAD dans le système Fe-Cr-Ni-Mo-X-N-C, afin de sélectionner des compositions prometteuses. On passera ensuite à l'élaboration du matériau: étude et modélisation de la nitruration des poudres, nitruration de lopins et densification, traitements thermiques. Une composition sera alors sélectionnée pour passer à une caractérisation poussée: propriétés mécaniques et mécanismes de déformation associés, comportement en corrosion. On s'attachera en particulier à démontrer l'intérêt de la nouvelle nuance par rapport à la nuance actuelle.