Réseaux de neurones bayésiens avec transistors à effet de champ à mémoire ferroélectrique (FeMFETs)
De plus en plus de systèmes critiques pour la sécurité reposent sur des fonctions d’intelligence artificielle (IA) qui exigent des capacités de calcul robustes et économe en énergie, souvent dans des environnements marqués par une rareté des données et une forte incertitude. Cependant, les approches traditionnelles de l’IA peinent à quantifier la confiance associée à leurs prédictions, ce qui les rend vulnérables à des décisions peu fiables, voire dangereuses.
Cette thèse s’inscrit dans le domaine émergent de l’électronique bayésienne, qui exploite l’aléa intrinsèque de nanodispositifs innovants pour effectuer des calculs bayésiens directement au niveau du matériel. En encodant les distributions de probabilité au sein même du hardware, ces dispositifs permettent une estimation naturelle de l’incertitude, tout en réduisant la complexité computationnelle par rapport aux architectures déterministes classiques.
Des travaux antérieurs ont déjà démontré le potentiel des memristors pour l’inférence bayésienne. Cependant, leur endurance limitée et leur consommation énergétique élevée lors de la programmation représentent des obstacles majeurs à l’apprentissage embarqué sur puce.
Dans cette thèse, il est proposé d’exploiter des composants mémoires emergents ferroelectric memory field-effect transistors (FeMFETs) pour l’implémentation de réseau de neurones bayésiens.
Développement et caractérisation de matrices de sources TeraHertz cointégrées en technologie photonique Silicium et III-V
La gamme TéraHertz (0.1–10 THz) suscite un fort intérêt pour l’imagerie et la spectroscopie (sécurité, santé, environnement, contrôle industriel) du fait de la transparence de nombreux matériaux en THz et des signatures spectrales caractéristiques. Cependant, les sources actuelles peinent à concilier puissance et accordabilité : les diodes et lasers à cascade quantique (QCL) délivrent plusieurs mW mais sur une bande étroite, tandis que les photodiodes III–V (photomixeurs) sont accordables sur de larges bandes mais limitées à quelques µW. Ce sujet de thèse vise à surmonter ces verrous en développant une matrice intégrée de sources THz. Le principe retenu est le photomélange de deux lasers à 1.55 µm dans des photodiodes InGaAs III–V, générant un courant THz modulé en phase et injecté dans des antennes adaptées.
La thèse débutera par l’étude expérimentale d’un réseau discret de 16 antennes THz (projet STYX) CEA-CTReg/DNAQ : installation du banc d’essai, mesures de cohérence de phase, de couplage optique, de lobes de rayonnement et d’interférences constructives. Ces expérimentations fourniront un socle scientifique pour la suite, à savoir la conception d’un réseau photonique intégré sur silicium. L’étudiant simulera l’architecture photonique (coupleurs, guides, modulateurs de phase, transitions Si/III–V) synchronisant plusieurs photodiodes InGaAs. Le prototypage comprendra la fabrication des circuits photoniques silicium (CEA-LETI) et des photodiodes/antennes THz en InP (III-V Lab ou, à confirmer, Heinrich-Hertz-Institut du Fraunhofer—HHI), suivie de leur intégration hybride (collage, alignement).
Cette thèse s’appuiera également sur une collaboration étroite avec le laboratoire IMS (Talence), reconnu au niveau national et international pour son expertise en photonique intégrée et en systèmes THz, apportant ainsi une complémentarité essentielle en modélisation optique, simulation électromagnétique et caractérisation expérimentale.
L’objectif final de cette thèse consistera à réaliser un prototype à quelques émetteurs (e.g. 4–16) dont la directivité et la puissance rayonnée sont accrues par les interférences constructives. La démonstration expérimentale validera le gain en portée et pénétration du rayonnement THz grâce à la combinaison puissance/accordabilité, ouvrant la voie à des systèmes d’imagerie THz de nouvelle génération.