Matériaux SCO&FE par ALD pour les transistors FeFET

Le Transistor à effet de champ ferroélectriques FeFET est un composant mémoire haute densité adapté aux configurations 3D-DRAM. Le concept FeFET combine l’utilisation des oxydes semi-conducteurs comme matériau de canal et des oxydes métalliques ferroélectriques FE comme grille de transistor [1, 2, 3]. Le dépôt de couches atomiques ALD de matériaux SCO et FE à très faible épaisseur (<10 nm) et à basse température (10 cm2.Vs) ; ultra-minces (<5 nm) et ultra-conformes (rapport d'aspect 1:10). Le doctorant bénéficiera du riche environnement technique de la salle blanche 300/200 mm du CEA-LETI et de la plateforme de nano-caractérisation (analyses physico-chimiques, structurales et microscopiques, mesures électriques).
Les développements porteront sur les points suivants :
1-Comparaison de couches SCO (IGZO Indium Gallium Zinc Oxide) fabriquées par techniques ALD et PVD : mise en œuvre de techniques de mesures et de véhicules de test adaptés
2-Caractérisation intrinsèque et électrique des couches ALD-SCO (IWO, IGZO, InO) et ALD-EF (HZO) : stœchiométrie, structure, résistivité, mobilité….
3-Co-intégration de couches ALD-SCO et ALD-FE pour structures FeFET 3D verticales et horizontales

[1]10.35848/1347-4065/ac3d0e
[2]https://doi.org/10.1109/TED.2023.3242633
[3]https://doi.org/10.1021/acs.chemmater.3c02223

Etude des mécanismes de gravure directe du métal pour le BEOL des nœuds ultimes sur SOI

Le sujet s’inscrit dans le déploiement des technologies silicium au niveau européen (European Chips Act) porté par le CEA-Leti. Le sujet se focalisera notamment sur la mise à disposition de briques technologiques avancées pour le routage électrique (Back End of Line) des dispositifs logiques et analogiques.
La mise au point de circuits toujours plus performants requiert des interconnexions aux dimensionnels de plus en plus agressifs. L’utilisation de matériaux traditionnels de routage comme le cuivre est alors remise en question, de même que l’architecture des briques de back-end of line (BEOL). Ce sujet de thèse apporte une approche en rupture, nécessaire afin d’adresser ces dimensionnels ultimes.
L’objectif de cette thèse est donc de développer une brique technologique BEOL pour les nœuds avancés par gravure directe du métal. Après une simulation préalable des propriétés électriques des interconnexions réalisées avec différents métaux, le travail consistera à proposer et réaliser une intégration innovante. Il s’agira dans une première phase de définir le design des structure de test électrique et d’établir un schéma d’intégration. Ensuite, le travail se concentrera sur l’étude de la gravure directe du métal sélectionné en utilisant des procédés écoresponsables, tout en préservant les performances des procédés et du dispositif final. Le.la candidat.e pourra s’appuyer sur la cellule Eco-innovation pour réaliser une analyse du cycle de vie (ACV) comparative de cette brique.
Le contrat de thèse est d’une durée de 3 ans et se déroulera dans les salle-blanche du CEA-Leti. Pour mener à bien cette étude, le.la candidat.e aura à sa disposition des équipements de derrière génération et un environnement de travail de pointe.

Étude de résines grayscales et optimisation des procédés de lithographie pour des applications optiques sub-microniques

La photolithographie grayscale est un procédé utilisé depuis plusieurs dizaines d'années pour la réalisation de structures tridimensionnelles sur des substrats semiconducteurs, en particulier dans les domaines de l'optique et de l'opto-électronique. Cette technologie permet de réaliser des motifs 3D facilement transférables à l'industrie, grace à l'utilisation d'équipements de lithographie.
Après avoir atteint une forte expertise sur la réalisation de structures 3D supérieurs au micron grace à l'utilisation d'équipements d'insolation en I-line (365nm), le LETI souhaite développer son expertise grayscale dans l'UV profond (248nm, 193nm et 193nm immersion) afin d'atteindre des motifs submicroniques avec pour objectif l'état de l'art mondial.
Cette thèse sera consacrée à l'amélioration des connaissances physico-chimiques des nouvelles résines grayscales, dans le but d'améliorer les performances des procédés de lithographie mais également de prévoir le développement des gravures associées et des nouveaux modèles optiques pour les masques.
Vous rejoindrez l'équipe du laboratoire de lithographie du CEA-LETI, et serez également amené à échanger avec d'autres équipes (gravure, simulation optique). Vous aurez accès aux équipements de pointes installés dans les salles blanches, ainsi qu'à une plate-forme de nano-caractérisation pour mener à bien ces travaux de thèse dans une forte dynamique expérimentale.

Amélioration des performances des CMOS par l’optimisation conjointe de la lithographie et du design

Lors du développement de nouvelles technologies (ex. FDSOI 10nm), les règles de dessin constituent le « code de la route » du designer (DRM). Elles sont définies afin de prendre en compte les contraintes électriques - physiques des circuits ainsi que celles issues des procédés de patterning et de lithographie en particulier. Le monde des designers et celui des lithographes étant relativement séparé, ces règles de dessin ne sont souvent pas optimales (sous-estimation des capabilités de lithographie, méconnaissance de l’impact des règles sur les performances des CMOS).
L’objectif de cette thèse est de montrer que l’utilisation d’un jumeau numérique de lithographie peut permettre d’améliorer les performances des CMOS par co-optimisation du design et de la lithographie (DTCO).

Sur la base d’un cas pratique des technologies CMOS avancées et à l’aide d’un jumeau numérique de lithographie, il s’agira de
- Développer de nouvelles méthodes de caractérisation du domaine de validité d’un procédé de lithographie (hotspot prédiction)
- Confronter la pertinence des règles de dessin vis-à-vis de ce domaine de validité
- Quantifier l’impact de la lithographie au travers des règles de dessin sur les performances électriques des dispositifs.
- Identifier les limitations process ou design les plus significatives afin de les challenger

La thèse se déroulera au CEA-Leti à Grenoble, acteur reconnu pour l’excellence de ses travaux de recherche dans le domaine de la microélectronique. Plus précisément, l’étudiant(e) sera rattaché(e) au Laboratoire de PAtterning Computationnel (LPAC) qui explore l’amélioration des procédés de lithographie et de gravure en s’appuyant sur des outils numériques les plus avancés. L’étudiant aura accès à ces outils ainsi qu’aux moyens de caractérisation et de fabrication 300mm de la salle blanche du CEA-Leti. L’étudiant(e) sera amené(e) à publier et à partager ses travaux lors de différentes conférences internationales.

Rôle de l'eau à l'interface d'un collage direct hydrophile

L'industrie microélectronique utilise de plus en plus la technologie du collage direct hydrophile pour réaliser des substrats et des composants innovants. Les équipes du CEA LETI sont leaders dans ce domaine depuis plus de 20 ans et proposent des études scientifiques et technologiques sur le sujet.
Le rôle clé de l'eau à l'interface de collage peut être mieux compris grâce à une nouvelle technique de caractérisation développée au CEA LETI. L'objectif de cette thèse est de confirmer ou d'infirmer les mécanismes physico-chimiques en jeu à l'interface de collage, en fonction des préparations de surface et des matériaux en contact.
Une grande partie de ce travail sera réalisée sur nos outils en salle blanche. La caractérisation de l'hydratation des surfaces par cette technique originale sera complétée par des caractérisations classiques telles que les mesures d'énergie d'adhésion et d'adhérence, les analyses FTIR-MIR et SIMS, et la réflectivité des rayons X à l'ESRF.

Croissance MOCVD de films 2D ferroélectriques In2Se3 pour mémoires non-volatiles haute densité et basse consommation

Les matériaux ferroélectriques à température ambiante sont l’élément clé des mémoires non-volatiles haute densité et basse consommation. Cependant, avec la miniaturisation accrue des dispositifs électroniques, les ferroélectriques conventionnels sont limités à une épaisseur critique en dessous de laquelle la ferroélectricité est instable. Les matériaux bidimensionnels (2D) grâce à leur chimie de surface saturée et leurs faibles interactions inter-couches présentent l’avantage d’être stables à la limite de la monocouche atomique et sont donc prometteurs pour explorer la ferroélectricité dans des épaisseurs nanométriques et sub-nanométriques. Jusqu’à présent, les preuves de concept démontrant la ferroélectricité 2D ont principalement utilisé des cristaux de quelques µm2 exfoliés mécaniquement à partir d’un cristal massif. En particulier, les phases ? et ? du semiconducteur lamellaire In2Se3 préservent un caractère ferroélectrique à la limite de la monocouche atomique.
Compte tenu de l’impératif des applications « wafer-scale » de la microélectronique, il y a aujourd’hui un besoin urgent de croissance de matériaux 2D de haute qualité cristalline sur des substrats de grande dimension. L’objectif de la thèse est de développer la croissance du matériau lamellaire In2Se3 dans ses phases non centro-symmétriques ? ou ? par épitaxie en phase vapeur par procédé chimique (MOCVD) sur des substrats de silicium de grande dimension (200 mm). A notre connaissance, seulement trois articles de la littérature démontrent la croissance MOCVD du composé In2Se3. Un seul met en évidence l’obtention de la phase ? (article de 2024). Le défi est donc difficile mais possible. La preuve de concept d’une cellule mémoire ferroélectrique sera réalisée si possible in fine en déposant directement une électrode métallique en surface du matériau ferroélectrique 2D sans endommager ce-dernier

Emission TeraHertz dans des puits quantiques topologiques HgTe/CdTe

Les sources de lumières cohérentes dans le domaine TeraHertz sont aujourd’hui inexistantes. Le graphène a été proposé pour réaliser de telles sources en utilisant les transitions entre niveaux de Landau sous champ magnétique mais l’équidistance énergétique entre ces niveaux ne permet pas d’écarter les recombinaisons non-radiatives de type Auger. Une nouvelle classe de matériaux, les isolants topologiques, permet de contourner ce problème en modifiant la répartition de ces niveaux de Landau par ouverture d’un gap, tout en conservant un système électronique de Dirac. HgTe/CdTe fait partie de ces isolants topologiques avec des mises en évidence expérimentales très claires de ces effets et des propriétés de transport électronique uniques. Nous proposons de réaliser des puits quantiques HgTe/CdTe en se plaçant au voisinage de la transition topologique. Nous avons récemment démontré expérimentalement l’émission Terahertz à partir de transitions de Landau avec un simple puits quantique. La problématique de la thèse consiste à optimiser l’épitaxie de ce système HgTe/CdTe et réaliser des empilements à multiples puits de façon à augmenter le gain. Ces multipuits devront être placés dans une cavité optique adaptée, à base de miroirs métalliques. Les électrons de Dirac devront également être polarisés par effet de grille pour ajuster les positions énergétiques des niveaux de Landau et contrôler leur population. Les procédés micro-électroniques seront employés pour y parvenir. Enfin, les propriétés d’émission TeraHertz seront déterminées précisément par spectroscopie magnéto-optique.
L’ensemble du travail de thèse conduira à préciser le potentiel de ce nouveau type de matériau pour des applications aux lasers TeraHertz et si possible à en faire une première démonstration.

Développement des procédés de gravure pour les nœuds avancés utilisant des techniques SADP

La miniaturisation des composants électroniques impose le développement de nouveaux procédés, car la lithographie immersion 193nm seule ne permet plus d’atteindre les dimensions demandées pour les nœuds technologiques les plus avancés (sub-10nm). Depuis des années, des stratégies complémentaires à la lithographie se sont développées. Ici, nous étudierons la technique de « Self-Aligned Double Patterning » (SADP), qui divise par deux le pas du réseau des motifs lithographiés initialement. Cette technique repose sur un dépôt conforme de diélectrique (espaceur) de part et d’autre des motifs initiaux (mandrel). Ces espaceurs serviront ensuite de masque de gravure pour l'obtention des motifs finaux. Les faibles dimensions recherchées imposent un contrôle parfait des procédés de gravure. Or cette étape altère les matériaux déposés conduisant à une perte des dimensions. Un des grands enjeux sera de maîtriser la gravure et donc la modification des matériaux utilisés pour satisfaire les spécifications recherchées (largeur des motifs, profil de gravure, consommation des couches d’arrêt, uniformité, vitesse de gravure…). Un des objectifs sera aussi de proposer des approches SADP alternatives permettant de générer différents types de motifs sur la plaque pour réaliser des transistors planaires FDSOI, ce qui est peu répandu actuellement dans la littérature.

Les défis de cette thèse ?
Développer des procédés innovants de gravure
Explorer de nouveaux couples de matériaux (espaceur/mandrel) et proposer in-fine une solution d’intégration industrielle qui pourra être validée électriquement.
Identifier les possibles verrous technologiques et proposer des solutions pour les contourner
Mettre en place un protocole de caractérisation fiable détectant les modifications physico-chimiques des matériaux en présence et la dimension des motifs finaux

Etude de l’effet de l’activation plasma sur la fiabilité des intégrations hybrides Cu/SiO2

Au cours des dernières années, le CEA-LETI s’est imposé comme un des principaux leaders mondiaux dans le développement de procédés pour l’industrie microélectronique avancée. En particulier, les procédés de collage hybride (HB) direct Cu/SiO2 plaque à plaque, une technologie de plus en plus utilisée pour la fabrication de dispositifs compacts, performants et multifonctionnels. Chaque plaque contient des circuits intégrés enterrés sous une couche contenant des plots électriques en Cu dans une matrice de SiO2. L’assemblage des plaques par collage directe consiste en la mise en contact de surfaces très propres. L’adhésion est assurée par la création spontanée de liaisons atomiques à l’interface de collage. Afin d’assurer une bonne tenue mécanique de la structure, il est indispensable d’activer la surface avant collage. Plusieurs approches ont été développées mais l’activation par plasma N2 reste la plus utilisée dans l’industrie. Cependant, l’utilisation de ce procédé reste controversée à cause des effets indésirables qu’il peut induire : 1/ la formation de nodules de Cu à l’interface de collage entre les plots métalliques et 2/ le dépôt d’espèces chimiques au niveau de l’interface Cu-Cu. Ces effets peuvent être préjudiciables aux propriétés électriques et à la fiabilité des dispositifs (claquage diélectrique en particulier). En collaboration avec STMicroelectronics et IM2NP, nous souhaitons étudier les différents mécanismes mis en jeu afin de pouvoir proposer un procédé d’activation assurant à la fois tenue mécanique et fiabilité de nos intégrations.

Developpement de matériaux de barrière auto-formants pour interconnexions BEOL avancées

Contexte : Avec la miniaturisation des dispositifs électroniques et l'introduction de nœuds technologiques avancés inférieurs à 10 nm, la fiabilité des interconnexions en cuivre (Cu) devient un enjeu central pour maintenir les performances des dispositifs microélectroniques. Ces interconnexions doivent non seulement garantir une conductivité optimale, mais aussi résister à la diffusion et à la délamination. Traditionnellement, des barrières de diffusion à base de tantale (Ta/TaN) sont utilisées pour empêcher la diffusion du cuivre dans le diélectrique. Cependant, à mesure que les dimensions des dispositifs diminuent, l'incorporation de ces barrières devient de plus en plus complexe, même avec des techniques avancées comme le dépôt de couches atomiques (ALD), car l'épaisseur de la barrière doit être réduite à quelques nanomètres. Pour relever ce défi, une alternative prometteuse émerge avec les barrières auto-formantes (Self-Forming Barriers, SFB). Ce procédé utilise des alliages de cuivre enrichis en éléments tels que le manganèse (Mn), le titane (Ti), l'aluminium (Al) ou le zinc (Zn), qui migrent à l'interface Cu-dielectrique pour former une barrière ultra-fine. Cette solution simplifie le processus de fabrication tout en minimisant la résistance électrique des interconnexions.
Projet de thèse : Le candidat au doctorat rejoindra une équipe de recherche multidisciplinaire pour explorer et optimiser les matériaux pour la réalisation de SFBs en utilisant des alliages de Cu. Les axes principaux incluent :
• Sélection et caractérisation des matériaux : Développer et analyser des films minces d'alliages de Cu par des méthodes électrochimiques et/ou PVD pour étudier leur microstructure et leur morphology.
• Formation de barrière : Contrôler la migration des alliages à l'interface Cu/dielectrique lors de l'annealing thermique et évaluer l'efficacité de la barrière.
• Propriétés électriques et mécaniques : Évaluer l'impact des SFB sur la résistance électrique, l'électromigration et la délamination, en particulier lors de tests accélérés.
Compétences requises : Diplôme de Master en électrochimie ou en science des matériaux avec un fort intérêt pour la recherche appliquée. Un intérêt prononcé pour le travail expérimental, des compétences en dépôt de films minces, électrochimie et caractérisation des matériaux (AFM, SEM, XPS, XRD, SIMS). Vous devez être capable de mener des recherches bibliographiques et d'organiser votre travail de manière efficace.
Environnement de travail : Le candidat travaillera au sein d'une équipe pluridisciplinaire et aura accès à des installations de pointe de 200/300 mm, il participera au projet NextGen du CEA sur des interconnexions avancées pour des applications à haute fiabilité.

Top