Passage à l'échelle des simulations de dynamique des dislocations pour l'étude du vieillissement des matériaux du nucléaire

Les matériaux utilisés dans les systèmes nucléaires de production d'énergie sont soumis à des sollicitations mécaniques, thermiques et d'irradiation, conduisant à une évolution progressive de leur tenue mécanique. La compréhension et la modélisation des mécanismes physiques impliqués est un enjeu important.

La simulation par Dynamique des Dislocations vise plus particulièrement à comprendre le comportement du matériau à l'échelle du cristal en simulant de façon explicite les interactions entre les dislocations, la microstructure et les défauts cristallins induits par l'irradiation. Le CEA, le CNRS et l'INRIA développent à cet effet le code de calcul NUMODIS depuis 2007 (Etcheverry 2015, Blanchard 2017, Durocher 2018).

Des travaux plus spécifiques aux alliages de zirconium (Drouet 2014, Gaumé 2017, Noirot 2025) ont permis de valider et enrichir la capacité de NUMODIS à traiter ces mécanismes physiques individuels en les confrontant directement à l’expérience, via des essais de traction in situ sous microscope électronique en transmission. Ces études se trouvent néanmoins limitées par l’incapacité actuelle du code NUMODIS à traiter un nombre suffisamment élevé et représentatif de défauts, et ainsi d’obtenir le comportement mécanique du grain (~10 microns).

L'objectif du travail proposé est de mettre en place de nouveaux algorithmes pour étendre les fonctionnalités du code, proposer et tester de nouveaux algorithmes numériques, paralléliser certaines parties encore traitées séquentiellement et finalement de démontrer la capacité du code à simuler le mécanisme de canalisation de la déformation dans un grain de zirconium irradié.

Les travaux porteront en priorité sur les algorithmes de calcul des vitesses, de formation de jonctions et d’intégration en temps, nécessitant à la fois une maîtrise de la physique des dislocations et des méthodes numériques correspondantes. Des algorithmes d’intégration proposés récemment par l’université de Stanford et au LLNL seront à cet effet implémentés et testés.

Un travail important sera également consacré à l’adaptation du code actuel (parallélisme hybride MPI-OpenMP), aux nouvelles machines de calcul faisant la part belle aux processeurs GPU, via l’adoption du modèle de programmation pour le calcul intensif Kokkos.

S’appuyant à la fois sur les travaux expérimentaux et numériques précédents, cette étude se terminera par la démonstration de la capacité de NUMODIS à simuler le mécanisme de canalisation dans un grain de zirconium irradié, et à identifier voire modéliser les principaux paramètres physiques et mécaniques impliqués.

A l’interface entre plusieurs domaines, le candidat devra avoir de bonnes bases en physique et/ou en mécanique, tout en étant à l’aise en programmation et en analyse numérique.

Références :
1. Etcheverry Arnaud, Simulation de la dynamique des dislocations à très grande échelle, Université Bordeaux I (2015).
2. Blanchard, Pierre, Algorithmes hiérarchiques rapides pour l’approximation de rang faible des matrices, applications à la physique des matériaux, la géostatistique et l’analyse de données, Université Bordeaux I (2017).
3. Durocher, Arnaud, Simulations massives de dynamique des dislocations : fiabilité et performances sur architectures parallèles et distribuées (2018).
4. Drouet, Julie, Étude expérimentale et modélisation numérique du comportement plastique
des alliages de zirconium sous et après irradiation (2014).
5. Gaumé, Marine, Étude des mécanismes de déformation des alliages de zirconium
après et sous irradiation (2017).
6. Noirot, Pascal, Etude expérimentale et simulation numérique, à l'échelle nanométrique et en temps réel, des mécanismes de déformation des alliages de zirconium après irradiation (2025).

Analyse des écoulements fortement concentrés en bulles par simulations numériques à interfaces résolues

Pour évaluer la sûreté des installations industrielles, le CEA développe, valide et utilise des outils de simulation en thermohydraulique. Il s’intéresse en particulier à la modélisation des écoulements diphasiques par différentes approches de la plus fine à la plus intégrale. Afin de mieux comprendre les écoulements diphasiques, le Service de Thermohydraulique et de Mécanique des Fluides (STMF) travaille à la mise en place d’une démarche multiéchelle où la simulation fine (DNS, Simulation Numérique Directe diphasique) est utilisée comme « expérience numérique » pour produire des données de référence. Ces données sont ensuite moyennées pour être comparées aux modèles utilisés à plus grande échelle. Cette démarche est appliquée aux écoulements haute-pression où le régime à bulles est conservé même à des taux de vide très élevés. Le Laboratoire de Développement aux Echelles Locales (LDEL) du STMF a développé une méthode de DNS (Front-Tracking) implémentée dans son code Open-Source de thermo-hydraulique : TRUST/TrioCFD [1] (code orienté objet, C++). Lors de plusieurs thèses, elle a permis de réaliser des simulations massivement parallèles pour décrire finement les interfaces sans recourir à des modèles, par exemple dans des groupes de bulles (appelés essaims) [2][3][4]. Actuellement appliquée aux écoulements diphasiques à bulle peu concentrés (fraction volumique inférieure à 12%), l’objectif de cette thèse sera d’évaluer et utiliser la méthode à plus fort taux de vide. Des simulations HPC de référence d’essaims de bulles seront menées sur des supercalculateurs nationaux jusqu’à des taux de présence de gaz de 40%. La qualité des résultats sera évaluée avant d’extraire des modèles physiques d’interactions de bulles dans ces conditions. L’objectif de ces modèles est de retrouver la dynamique globale de l’essaim de bulle à des résolutions beaucoup plus faibles, et ainsi permettre d’étudier des systèmes plus gros et en déséquilibre (forçage externe de génération de turbulence imposée, gradient de vitesse moyenne imposé, …). Ce travail s’inscrit dans un projet ANR, en collaboration avec l’IMFT et le LMFL en parallèle de 2 autres thèses dont une expérimentale au LMFL avec lesquelles il y aura de fortes interactions. Il inclut des aspects numériques (validation), des développements informatiques (C++), ainsi qu’une analyse physique des écoulements obtenus. L'étudiant sera accueilli au LDEL au sein d'un groupe de chercheurs et de nombreux doctorants. En collaboration avec le monde académique, il publiera ses travaux et participera à des conférences internationales.

SCHEMA AUX CARACTERISTIQUES POUR LE TRANSPORT DES NEUTRONS EN 3D COMBINANT LA METHODE LINEAIRE SURFACIQUE ET L’EXPANSION POLYNOMIALE AXIALE ET ACCELERE PAR LA PROGRAMMATION GPU

Cette thèse s'inscrit dans le cadre du développement des techniques de calcul numérique pour la physique des réacteurs. Plus précisément, elle porte sur la mise en œuvre de méthodes intégrant des développements spatiaux d'ordre supérieur pour le flux et les sections efficaces neutroniques. L'objectif principal est d'accélérer les algorithmes existants et ceux qui seront développés grâce à la programmation sur GPU. En exploitant la puissance de calcul des GPU, cette recherche vise à améliorer l'efficacité et la précision des simulations en physique des réacteurs, contribuant ainsi au domaine plus vaste du génie nucléaire et de la sûreté nucléaire.

Simulation des gels d’altération des verres nucléaires à l’échelle mésoscopique à l’aide d’un système quaternaire.

Ce sujet s’inscrit dans le cadre des études réalisées sur le comportement à long terme des verres nucléaires immobilisant des déchets radioactifs et potentiellement destinés à être placés en stockage géologique. L’enjeu réside en la compréhension des mécanismes d’altération et de formation d'un gel (couche passivante pouvant ralentir la vitesse d’altération du verre) par l’eau et à la prédiction des cinétiques de relâchement des radionucléides sur le long terme.

L’approche de simulation proposée vise à prédire à l’échelle mésoscopique le processus de maturation du gel formé lors de l’altération du verre par l’eau à l'aide d'un "modèle à champs de phases" ternaire composé du silicium, du bore et de l’eau (lixiviant) auquel il conviendra d'ajouter l'alluminium.

Le modèle mathématique quaternaire sous-jacent est composé d’un ensemble d’Equations aux Dérivées Partielles non-linéaires couplées. Elles sont basées sur les équations de Allen-Cahn et du transport. La résolution numérique des équations associées est réalisée par méthode de Boltzmann sur réseaux (Lattice Boltzmann Method – LBM) programmée en C++ dans le code de calcul massivementparallèle LBM_saclay qui s’exécute sur plusieurs architectures HPC, aussi bien muti-CPUs que multi-GPUs.

Le sujet proposé nécessite de bonnes bases en mathématiques appliquées et en programmation afin de développer les algorithmes nécessaires à la bonne résolution du nouveau système d'équations fortement couplées.

Simulations HPC diphasiques par méthodes de Boltzmann sur réseaux et adaptation automatique de maillage

Le CEA/STMF développe des outils de calcul scientifique en thermohydraulique qui ont pour objectif de quantifier les transferts de masse et d’énergie dans les systèmes nucléaires du cycle tels que les réacteurs et les dispositifs de retraitement ou de confinement des déchets radioactifs. Dans ce travail de thèse, on s'intéresse aux méthodes “Lattice Boltzmann” (LBM) adaptés aux maillages dynamiques (Adaptative Mesh Refinement – AMR) dans un environnement informatique mutualisé et générique sur base Kokkos et exécutable sur les supercalculateurs multi-GPU. Le travail proposé consiste à développer dans le code Kalypsso-lbm les méthodes LB pour simuler des Equations aux Dérivées Partielles (EDPs) couplées qui modélisent les écoulements incompressibles diphasiques et multi-composants comme ceux rencontrées dans les dispositifs de l'aval du cycle. Une fois les développements réalisés, ils seront validés avec des solutions de références qui permettront une comparaison des méthodes d'interpolation entre les blocs de différentes taille du maillage AMR. Une discussion sera réalisée sur les critères de raffinement et de déraffinement qui seront généralisés pour ces nouvelles EDPs. Enfin, des benchmarks de performance quantifieront l'apport de l'AMR sur des simulations 3D lorsque la simulation de référence est réalisée sur un maillage statique et uniforme. Ce travail exploitera les supercalculateurs déjà opérationnels (e.g. Topaze-A100 du CEA-CCRT), ainsi que le supercalculateur exascale Alice Recoque selon l'état d'avancement de son installation.

Architecture innovante et traitement du signal pour des télécommunications optiques mobiles

Les communications optiques en espace libre reposent sur la transmission de données par la lumière entre deux points distants, sans recourir à des fibres ou à des câbles. Cette approche s’avère particulièrement intéressante lorsque les connexions filaires sont difficiles à déployer ou trop coûteuses.
Cependant, ces liaisons sont fortement affectées par les conditions atmosphériques : brouillard, pluie, poussières et turbulences thermiques atténuent ou déforment le faisceau lumineux, entraînant une dégradation notable de la qualité de la communication. Les solutions existantes restent coûteuses et limitées, tant du point de vue des dispositifs optiques de compensation que des algorithmes de traitement du signal.

Dans ce cadre, la thèse vise à concevoir des liaisons optiques mobiles performantes et robustes, capables de s’adapter à des environnements dynamiques et perturbés. L’étude portera notamment sur l’exploitation de dispositifs de type Optical Phased Array (OPA) sur Silicium — une technologie issue des systèmes LiDAR « low cost » — offrant une voie prometteuse vers des architectures compactes, intégrées et à faible coût.
L’orientation principale des travaux concernera le développement d’approches algorithmiques avancées pour le traitement et la compensation du signal. Le ou la doctorant·e sera amené·e à concevoir un environnement de simulation dédié, permettant d’évaluer et de valider les choix architecturaux et les stratégies algorithmiques avant toute expérimentation pratique.

L’objectif global est de proposer une architecture intégrée, flexible et fiable, garantissant la continuité des communications optiques en mouvement, avec des applications potentielles dans les domaines aérien, spatial et terrestre.

Modélisation de l’impact de défauts dans les structures acier-béton. Identification des défauts critiques par méta-modélisation et algorithmes d’optimisation.

Pour faire face à des enjeux de constructibilité grandissant, les structures « acier-béton » (structures « steel – concrete » ou « SC ») deviennent une alternative prometteuse face aux structures classiques en béton armé. Ces éléments sont constitués d’un béton de remplissage, de deux plaques externes métalliques et de goujons en acier permettant d’assurer l’action composite. Si ces structures présentent un intérêt certain lié à leur comportement mécanique d’ensemble, la présence des plaques métalliques empêche un contrôle visuel de la qualité du bétonnage. Il apparaît donc essentiel de caractériser l’impact de défauts potentiels. C’est dans ce contexte que s’inscrit le sujet de thèse. Il s’agira, en s’appuyant sur des résultats récents du laboratoire, de proposer une démarche numérique de prise en compte des défauts dans les structures acier-béton. Le travail de thèse s’articulera en plusieurs étapes : validation d’une stratégie de modélisation du comportement mécanique de structures acier-béton sans défaut, introduction de défauts dans la simulation et évaluation de l’applicabilité de la stratégie numérique, construction d’un métamodèle et analyse de sensibilité et définition de la (ou des) configuration(s) de défauts critiques par algorithmes d’optimisation. L’un des objectifs opérationnels de la thèse est de disposer d’un outil permettant de déterminer les configurations de défauts critiques (taille, position et nombre) en lien avec un objectif fixé sur une quantité d’intérêt donnée (perte de résistance ou de rigidité moyenne par exemple). Ce travail s’appuiera donc sur l’utilisation et le développement d’outils numériques à l’état de l’art, dans les domaines de la modélisation par éléments finis, des techniques d’optimisation, d’analyse de sensibilité et d’optimisation. La thèse sera réalisée dans un cadre collaboratif riche, notamment en partenariat avec EDF.

Intelligence Artificielle pour la Modélisation et l'Analyse Topographique des Puces Électroniques

L’inspection des surfaces de wafers est cruciale en microélectronique pour détecter les défauts affectant la qualité des puces. Les méthodes traditionnelles, basées sur des modèles physiques, sont limitées en précision et en temps de calcul. Cette thèse propose d’utiliser l’intelligence artificielle (IA) pour caractériser et modéliser la topographie des wafers, en exploitant des techniques d’interférométrie optique et des modèles avancés.

L’objectif est de développer des algorithmes d’IA capables de prédire les défauts topographiques (érosion, dishing) avec une haute précision, en s’appuyant sur des architectures comme les réseaux de neurones convolutifs (CNN), les modèles génératifs ou les approches hybrides. Les travaux incluront l’optimisation des modèles pour une inférence rapide et une généralisation robuste, tout en réduisant les coûts de fabrication.

Ce projet s’inscrit dans une démarche d’amélioration des procédés de microfabrication, avec des applications potentielles dans l’industrie des semi-conducteurs. Les résultats attendus contribueront à une meilleure compréhension des défauts de surface et à l’optimisation des processus de production.

Optimisation et contrôle de la température dans les systèmes pile à combustibles

Les piles à combustible à membranes échangeuses de proton (PEMFC) représentent une technologie clé pour le développement de systèmes énergétiques propres et durables, en particulier pour des applications lourdes dans le transport où leur densité énergétique est très intéressante. Néanmoins, afin de représenter une alternative industrielle viable, un certain nombre de verrous doit encore être levé parmi lesquelles les coûts d’exploitation et surtout la durabilité des systèmes en conditions réelles d’usage. Parmi les leviers d’action, l’optimisation des conditions opératoires est une piste prometteuse pour limiter les phénomènes de dégradations ayant lieu au sein de la pile. La température de fonctionnement est en particulier un paramètre clé car elle intervient à toutes les échelles : de la cinétique des mécanismes de dégradation à la capacité thermique que le système peut dissiper, en passant par l’équilibre en eau au sein de la pile. Malgré l’influence de ce paramètre sur la durabilité, celle-ci n’est généralement optimisée à l’échelle système que pour obtenir les meilleures performances, le temps de réponse le plus court possible et limiter la taille du système de gestion thermique.
L’objectif de cette thèse est de travailler à l’optimisation de la gestion de température d’une pile à combustible au sein d’un système en prenant en compte non seulement le critère de performances mais aussi celui de la durabilité. Pour ce faire l’impact de la température de fonctionnement sur les mécanismes de dégradation sera analysée à l’aide des différents outils de simulation déjà présents au sein du LITEN et de la quinzaine d’années d’expérience des équipes sur l’étude de la dégradation des piles à combustible PEMFC. Différentes architectures thermiques seront proposées et évaluées en lien avec les travaux d’optimisation des lois de contrôle de la température. Ces dernières pourront être mise en œuvre sur un système pile à combustible réel dans le but de démontrer la pertinence de la solution proposée par des données expérimentales concrètes.

Etude du comportement en début de vie du combustible MOX à isotopie dégradée.

La France a fait le choix d'un cycle du combustible nucléaire dit « fermé ». Il consiste à traiter le combustible usé pour récupérer ses matières valorisables (uranium et plutonium), tandis que ses autres composés (produits de fission et actinides mineurs) constituent les déchets ultimes. Le combustible UO2 irradié en Réacteurs à Eau Pressurisée (REP) est ainsi aujourd’hui retraité pour produire du plutonium (PuO2), réutilisé ensuite sous forme de combustible MOX (Mixed Oxide) lui-même irradié en REP : on parle de monorecyclage du plutonium. La solution de multi-recyclage des matières via l’utilisation de combustibles contenant du Pu issu du traitement d’assemblages MOX usés, est une perspective actuellement étudiée au CEA. Ce plutonium multi-recyclé contient une plus forte proportion d’isotopes à forte activité alpha (Pu238,Pu240,Pu 241/Am241), entraînant une auto-irradiation alpha plus sévère que dans les MOX actuels [1]. Ceci exacerbe certains phénomènes physiques [2-5] (gonflement du combustible lié à la précipitation de l’hélium et à la création de défauts cristallins, baisse de la conductivité thermique)[6-8], pouvant altérer son comportement en réacteur.
La thèse proposée vise à étudier l’impact de ces phénomènes sur le comportement en début d’irradiation de combustibles MOX, via une approche expérimentale couplée à la modélisation. Des traitements thermiques seront utilisés pour analyser les mécanismes de guérison des défauts cristallins et le comportement de l’hélium. Diverses techniques expérimentales permettant de caractériser la structure et microstructure (diffraction X, MEB, spectroscopie Raman, microsonde), les densités de défauts (MET), le relâchement d’hélium (KEMS), la reproduction du gradient thermique (laser CLASH) et la mesure de conductivité thermique (laser LAF) seront utilisées. Les résultats alimenteront des simulations pour modéliser la microstructure et les propriétés thermiques.
Cette étude transverse et pluridisciplinaire permettra de mieux appréhender les phénomènes mis en jeu lors de la première montée en puissance pour des combustibles endommagés par l’auto-irradiation alpha, avec un accent tout particulier sur l’impact de l’He produit par décroissance.

Vous serez basé au Laboratoire d'Etude de Conception et d'Irradiation Multi filière au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone du CEA/Cadarache dont vous dépendrez. Vous collaborerez également avec le Laboratoire d'analyses chimiques et caractérisation des MATériaux (LMAT)du CEA/Maroule ainsi que le centre de recherche européen (JRC) de Karlsruhe pour la partie expérimentale. Vous pourrez valoriser vos résultats au travers de publications scientifiques et participations à des congrès. Vous aurez l’occasion d’apprendre ou de vous perfectionner dans plusieurs techniques réutilisables dans d’autres contextes, applicables à de nombreux domaines de la science des matériaux et de l’ingénieur.

[1]O. Kahraman, thésis, 2023.[2]M. Kato et al., J Nucl Mater, 393 (2009) 134–140.[3]L. Cognini et al., Nuclear Engineering and Design 340 (2018) 240–244.[4] T. Wiss et al., Journal of Materials Research 30 (2015) 1544–1554.[5]D. Staicu et al., J Nucl Mater 397 (2010) 8–18.[6] T. Wiss et al.,Front. Nucl. Eng. 4 (2025) 1495360.[7]E.P. Wigner, J. Appl. Phys. 17 (1946) 857–863.[8]D. Staicu et al., Nuclear Materials and Energy 3–4 (2015) 6–11.

Top