Le système Pd-Rh-Ru-Te-O dans les verres nucléaires et son impact sur les propriétés de conductivité de la fonte

En France, les déchets nucléaires de haute activité sont vitrifiés et forment un matériau vitreux homogène. Cependant, les éléments Pd, Rh et Ru, associés ou non à du Te et de l’O, sont très peu solubles dans le verre et forment des particules dans la fonte et dans le verre.
Le rhodium et le ruthénium peuvent se réduire à l’état métallique lors de l’élaboration des verres. Ils sont alors plus conducteurs et leurs effets sur les propriétés physiques de la fonte peuvent affecter le pilotage industriel du procédé de vitrification. De fait, la connaissance de la spéciation et de la morphologie des éléments du système Pd-Rh-Ru-Te-O est essentielle pour la bonne maîtrise du procédé.
Pour cela, cette thèse sera découpée en 2 approches interdépendantes : une approche par calculs thermodynamique Calphad et une approche expérimentale. L’approche expérimentale aura pour but de comprendre et de quantifier les phénomènes de réduction de (Ru,Rh)O2 et la solubilisation de Ru et Rh dans Pd-Te via des élaborations et des caractérisations (MEB-EDS-WDS, DRX,...) de verres avec platinoïdes. Les résultats acquis permettront d’enrichir une base de données Calphad servant à prédire l’état des platinoïdes dans la fonte verrière lors de l’élaboration à l’échelle industrielle. Dans un second temps, des essais de conductivité électrique haute température seront menés sur les verres précédemment élaborés afin de relier la spéciation de Ru et Rh avec la conductivité électrique des fontes.
Les candidats devront être rigoureux, autonomes et posséder des bonnes capacités de communication et de rédaction. Des connaissances et expériences dans le domaine des verres ou de la thermodynamique seront un plus.

Matériaux activés conducteurs pour la conversion énergétique et le stockage de l’énergie par effet capacitif

La production d’énergie à partir de sources renouvelables nécessite des systèmes de stockage efficaces pour pallier les déséquilibres entre offre et demande. Le projet propose de développer des super-condensateurs économiques en utilisant des électrodes composites issues de sous-produits industriels. Les liants minéraux, comme les géopolymères ou les Matériaux Alcali Activés (MAA), rendus conducteurs par dispersion de noir de carbone, sont étudiés pour des applications de stockage d'énergie ou de génération de chaleur. En se basant sur un brevet déposé récemment, nous nous proposons de réaliser une étude approfondie de ces composites conducteurs. Leurs performances seront évaluées en fonction des paramètres de formulation et de mise en forme. Il s’agira également de caractériser finement le réseau poreux et la dispersion des charges conductrices dans le matériau. Enfin, des essais de mise en forme du matériau seront menés et des super-condensateurs seront assemblés, permettant l’étude de l’impact du procédé (impression 3D) et des géométries.

Céramiques électrolytes pour sondes potentiométriques à oxygène dans des milieux corrosifs pour les réacteurs nucléaires avancés

Les électrolytes solides sont des matériaux qui jouent un rôle de plus en plus important dans les applications énergétiques (piles à combustibles, électrolyseur…). Parmi ceux-ci, les céramiques oxydes de structure fluorite occupent une place de choix. Convenablement dopées, elles permettent d’obtenir des conductivités électriques importantes et présentent des propriétés qui permettent de les utiliser à hautes températures ou dans les milieux extrêmes. Toutefois, ces propriétés d’usage sont très dépendantes de la microstructure de la céramique et donc de sa voie d’élaboration. Au CEA IRESNE, nous développons depuis plusieurs années des sondes potentiométriques utilisant ce type d’électrolyte pour mesurer l’oxygène (en impureté) dans les fluides caloporteurs des réacteurs avancés.
Dans ce travail de thèse, il est proposé d’étudier les liens entre la microstructure de deux matériaux fluorites, le dioxyde d’hafnium et le dioxyde de thorium dopés, et leur comportement dans des milieux agressifs, le sodium liquide ou les sels chlorures fondus. L’influence la taille de grains, la présence d’impuretés et la densité de ces oxydes qui seront élaborés par voie humide sur la cinétique de corrosion en milieu sodium permettra de déterminer les mécanismes de corrosion. Le but est d’optimiser la durée de vie en fonctionnement de ces céramiques pour réaliser des sondes potentiométriques à oxygène dans des systèmes énergétiques et de les utiliser dans des sondes potentiométriques pour étudier la chimie de ces milieux complexes.
Le travail de thèse de trois ans, proposé à un(e) étudiant(e) diplômé(e) en sciences des matériaux, se déroulera au CEA/IRESNE sur le site de Cadarache (Bouches du Rhône) en collaboration avec l’Institut de Chimie Séparative de Marcoule (Gard).

Stabilisation des phases secondaires dans les aciers ferritiques nanorenforcés : Approche par criblage à haut débit de compositions chimiques

Les aciers ferritiques renforcés par dispersion de nano-oxydes (Oxide Dispersion Strengthened, ODS) sont envisagés pour les réacteurs nucléaires de 4ème Génération et de fusion en raison de leurs excellentes propriétés thermomécaniques et de leur stabilité sous irradiation. Toutefois, ces aciers sont fragilisés par des phases secondaires résultant des interactions complexes entre les éléments d'alliage et les interstitiels (C, N, O) introduits lors de leur élaboration. Certains éléments d’alliage (tels que Nb, V, Zr, Hf) pourraient stabiliser ces phases indésirables et réduire leur effet néfaste sur le comportement mécanique des ODS. Cette thèse a pour objectif de développer une méthode de criblage à haut débit afin d'identifier les compositions d'alliages optimales, en associant des techniques rapides d’élaboration et de caractérisation. Le(la) doctorant(e) synthétisera différents aciers ODS par métallurgie des poudres et réalisera les caractérisations chimiques, microstructurales et mécaniques. Ces travaux permettront d'améliorer la compréhension des mécanismes de stabilisation des interstitiels et de proposer des méthodologies efficaces pour caractériser de nouveaux matériaux. Le(la) doctorant(e) bénéficiera d'une formation approfondie en métallurgie et en traitement de données, ouvrant des perspectives dans l'industrie, les start-ups du nucléaire et la recherche.

Purification des sels chlorures en vue de leur utilisation dans des systèmes de production d’énergie : développement de méthodes, compréhension et optimisation

Dans le cadre de la transition énergétique, les sels chlorures fondus reçoivent un intérêt croissant comme fluide caloporteur et combustible dans des systèmes de production d’énergie, tels que le solaire à concentration ou le nucléaire de IVème génération avec les réacteurs à sels fondus (‘molten salt reactors’ ou MSR). Toutefois, leur utilisation est pour l’instant limitée par les fortes vitesses de corrosion des matériaux de structure utilisés, corrosion qui semble en grande partie liée à la pureté du sel utilisé. En particulier, la maîtrise de la teneur en oxygène semble primordiale pour limiter la dissolution de nombreux éléments. Cependant, certains sels d’intérêt pour l’industrie nucléaire (ternaire NaCl-MgCl2-PuCl3 et son simulant NaCl-MgCl2-CeCl3) se trouvent être particulièrement difficile à purifier, du fait de leur forte affinité avec l’eau.
Il est donc nécessaire de comprendre la nature et la stabilité des espèces formées dans un système pollué (chlorures, oxydes, oxy-chlorures, hydroxy-chlorures) et de proposer des méthodes de purification des sels adaptées à un système industriel. Le candidat à la thèse aura ainsi pour objectifs de purifier et caractériser des mélanges de sels (binaires, ternaires et éventuellement quaternaires) à partir des méthodes disponibles dans les différents laboratoires impliqués par ce travail. La purification pourra avoir lieu à partir d’électrolyse, de précipitation, de filtration, de bullage de gaz chlorant ; la caractérisation pourra être réalisée par des méthodes électrochimiques, des sondes potentiométriques à oxygène, par spectroscopie Raman à haute température sous atmosphère inerte, ou encore par analyses chimiques et matériaux classiques.
L’étudiant réalisera son doctorat à l’institut sur les énergies IRESNE situé au CEA Cadarache (Bouches-du-rhône), au sein d’un laboratoire (LMCT) où seront installés la boîte à gants de purification et les moyens de mesure. Le LMCT a une grande expérience de la chimie des caloporteurs avancés (en particulier le sodium).
Des collaborations seront réalisées avec d’autres laboratoires du CEA, en particulier à Marcoule, et avec le LGC Toulouse disposant d’une expérience de plus de 20 ans dans les sels fondus (co-direction de thèse).
Le profil recherché est un ingénieur ou master recherche en électrochimie ou science des matériaux.

Etude de l'altération du MOx et de composés modèles en condition d'entreposage sous eau

Ce sujet de thèse traite du recyclage du combustible nucléaire en France, avec un focus sur le multirecyclage de l’uranium et du plutonium des combustibles MOX, prévu d'ici 2040. Après leur passage en réacteur, les combustibles usés sont entreposés sous eau dans des piscines, où un défaut de gaine pourrait entraîner la contamination de l’eau et compliquer leur retraitement. Cette thèse propose d’étudier l'altération de ces combustibles ainsi que l’apparition des phases secondaires dans des conditions simulant l'entreposage.
Le travail est divisé en trois parties : la préparation de composés modèles, l’étude cinétique de l’altération chimique des matériaux modèles et industriels (MOX), et l’analyse des phases secondaires se formant en surface des combustibles irradiés. L'objectif est de mieux comprendre la stabilité de ces phases en fonction des conditions chimiques et d'irradiation, ainsi que les mécanismes de transformation. Les résultats permettront de développer des modèles de comportement des crayons défectueux sur plusieurs décennies, contribuant ainsi à une gestion plus sûre et efficace des combustibles irradiés.

Décrypter les rôles de la chimie de surface et de la structuration multi-échelle dans le contrôle des performances de stockage des supercondensateurs à base de graphène

L'objectif de ce projet de recherche fondamentale est d’élucider les corrélations existantes, entre les propriétés des matériaux à base de graphène et leurs performances de stockage électrochimique, en dispositif supercondensateur. L’importance de la chimie de surface et celle de la structure multi-échelle de ces matériaux seront spécifiquement étudiées, car la plupart des propriétés physico-chimiques de ces matériaux découlent de ces 2 paramètres. Aussi, des matériaux spécifiquement conçus pour présenter des chimies de surface différentes (dopage N, différents degrés de réduction…) et différentes structurations seront synthétisés et caractérisés, en utilisant des méthodes classiques à avancées (CV-SANS, in-situ SANS…), spécifiquement adaptées à l’étude de ces propriétés et de leur évolution en cours de cyclage électrochimique. Les résultats obtenus permettront de fournir une compréhension multi-échelle du mécanisme de stockage et aideront à concevoir des matériaux dotés de propriétés de stockage optimisées.

Etude du comportement en corrosion dans NaCl-MgCl2-CeCl3 d’un alliage base nickel en présence de produits de fission (Te,S) pour les réacteurs à sels fondus

L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour le stockage d’énergie ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
L’objectif du sujet de thèse proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en l’étude intégrale du comportement d’alliages base nickel prometteurs dans le ternaire NaCl-MgCl2-CeCl3, représentatif du sel utilisé dans le concept français de réacteurs à sels fondus, à 600°C. Par intégrale, il est ici entendu depuis la préparation d’éprouvette à la caractérisation multi-échelle et multi-techniques des produits de corrosion. Cette thématique revêt un haut caractère expérimental et de compréhension des mécanismes de corrosion. L’influence des produits de fission, tels que le tellure ou le soufre sur les mécanismes de corrosion sera particulièrement étudiée.

Vers une compréhension du comportement expansif de certains enrobés cimentaires de concentrats d’évaporation : approche expérimentale et modélisation couplée chimie-transport-mécanique simplifiée

Dans l’industrie nucléaire, l’évaporation est un procédé communément utilisé pour réduire le volume des effluents radioactifs de faible ou moyenne activité avant leur conditionnement. Il en résulte des concentrats d’évaporation, solutions de forte salinité pouvant contenir un large éventail d’espèces ioniques. Ces concentrats sont ensuite conditionnés en matrice cimentaire, matériau présentant de nombreuses qualités intrinsèques (faible coût, disponibilité, simplicité de mise en œuvre, bonne résistance mécanique, stabilité sous irradiation…). L’acceptation en stockage des colis de déchets cimentés passe néanmoins par le respect d’un certain nombre de spécifications. Il est ainsi nécessaire de vérifier l’absence d’expansion conduisant à une dégradation de la matrice lors d’une conservation en environnement humide.
La thèse visera à comprendre les mécanismes qui régissent les variations volumiques d’enrobés de concentrats d’évaporation lorsqu’ils sont conservés sous eau. L’étude sera menée sur déchets simulés, reconstitués par dissolution dans l’eau de sels aux concentrations désirées. Elle débutera par une phase expérimentale qui fournira les données d’entrée pour une modélisation physico-chimique simplifiée des enrobés afin d’en estimer le comportement mécanique macroscopique, ainsi que les principaux flux lixiviés.
Ce projet de recherche s'adresse à un doctorant désireux de renforcer ses compétences en science des matériaux tout en contribuant à des solutions innovantes pour le conditionnement des déchets radioactifs. Il sera mené en partenariat avec l’ONDRAF, l’Organisme National belge pour la gestion des Déchets Radioactifs, et s’appuiera sur les compétences de deux laboratoires du CEA, le Laboratoire de Formulation et de Caractérisation des Matériaux Minéraux (CEA Marcoule) ainsi que le Laboratoire d’Etude du Comportement des Bétons et Argiles (CEA Saclay).

Top