Synthèse de nanodiamants à façon pour la production d'hydrogène par photocatalyse
Les nanoparticules de diamant (nanodiamants) sont utilisées en nanomédecine, dans les technologies quantiques, les lubrifiants et les composites avancés [1-2]. Nos résultats récents montrent que le nanodiamant peut également agir comme photocatalyseur, permettant la production d'hydrogène sous illumination solaire [3]. Malgré sa large bande interdite, sa structure de bande est adaptable en fonction de sa nature et de la chimie de sa surface [4]. De plus, l'incorporation contrôlée de dopants ou de carbone sp2 conduit à la génération d'états dans la bande interdite qui améliorent l'absorption de la lumière visible, comme l'a montré une étude récente impliquant notre groupe [5]. Les performances photocatalytiques des nanodiamants dépendent donc fortement de leur taille, de leur forme et de leur concentration en impuretés chimiques. Il est donc essentiel de développer une méthode de synthèse de nanodiamants « sur mesure »,dans laquelle ces différents paramètres peuvent être finement contrôlés, afin de fournir un approvisionnement en nanodiamants «contrôlés », qui fait actuellement défaut.
Cette thèse vise à développer une approche bottom-up pour la croissance de nanodiamants en utilisant un template sacrificiel (billes de silice) sur lequel des germes de diamant < 10 nm sont fixés par interaction électrostatique. La croissance de nanoparticules de diamant à partir de ces germes sera réalisée par dépôt chimique en phase vapeur assisté par micro-ondes (MPCVD) à l'aide d'un réacteur rotatif développé au CEA NIMBE. Après la croissance, les CVD-NDs seront collectés après dissolution du template sacrificiel. Des expériences préliminaires ont démontré la faisabilité de cette approche avec la synthèse de nanodiamants facettés de <100 nm(appelés CVD-ND).
Au cours de la thèse, la nature des germes de diamant (nanodiamants [taille ˜ 5 nm] synthétisés par détonation ou HPHT, ou dérivés moléculaires de l'adamantane) ainsi que les paramètres de croissance CVD seront étudiés afin d'obtenir des CVD-NDs mieux contrôlés en termes de cristallinité et de morphologie. Les nanodiamants dopés au bore ou à l'azote seront également étudiés, en jouant sur la composition de la phase gazeuse. La structure cristalline, la morphologie et la chimie de surface seront étudiées au CEA NIMBE à l'aide du MEB, de la diffraction des rayons X et des spectroscopies Raman, infrarouge et de photoélectrons. Une analyse détaillée de la structure cristallographique et des défauts structurels sera effectuée par microscopie électronique à transmission à haute résolution(collaboration). Les FNDs CVD seront ensuite exposés à des traitements en phase gazeuse (air, hydrogène) afin de moduler leur chimie de surface et de les stabiliser dans l'eau. Les performances photocatalytiques pour la production d'hydrogène sous lumière visible de ces différents CVD-NDs seront évaluées et comparées en utilisant le réacteur photocatalytique récemment installé au CEA NIMBE.
Références
[1] Nunn et al., Current Opinion in Solid State and Materials Science, 21 (2017) 1.
[2] Wu et al., Angew. Chem. Int. Ed. 55 (2016) 6586.
[3] Marchal et al., Adv. Energy Sustainability Res., 2300260 (2023) 1-8.
[4] Miliaieva et al., Nanoscale Adv. 5 (2023) 4402.
[5] Buchner et al., Nanoscale 14 (2022) 17188.
Panneaux solaires recyclés en nanofils d’argent pour réduction catalytique du CO2 et électrodes transparentes
Les nanofils d’argent (AgNW) et leurs réseaux sont des nanomatériaux aux propriétés remarquables : conductivité électrique et thermique record à l’ambiante, et bonne stabilité chimique. Ils sont fabriqués à l’échelle industrielle et utilisés comme électrodes ou films chauffants transparents. Deux applications plus récentes et prometteuses concernent la catalyse de réduction du CO2 et les films de faible émissivité infra-rouge.
Ce projet de thèse vise à synthétiser les AgNW à partir d’argent recyclé issus de panneaux solaires en fin de vie, dans une approche de « chimie verte ». La qualité du nanomatériau produit sera directement testée dans deux dispositifs pertinents : les films de faible émissivité dans l'IR pour la réduction des pertes de chaleur par rayonnement, et en électrolyseur de réduction du CO2 pour la filière des électrocarburants, dits e-fuels. On s’attachera à comprendre les bases fondamentales de l’impact des impuretés sur la synthèse des AgNWs, mais aussi leur effet sur les propriétés physiques des réseaux de AgNWs, leur stabilité sous stress et leurs performances en catalyse.
Le/la doctorante sera embauchée au CEA de Grenoble, dans le laboratoire SyMMES, un laboratoire de recherche fondamentale spécialisé en synthèse de nanomatériaux et étude de dispositifs pour l’énergie, cellules solaires, batteries et électrolyse/photocatalyse. Le travail sera partagé avec le laboratoire LMGP du Grenoble INP, spécialisé dans l’élaboration et l’étude de matériaux et leur implémentation dans des dispositifs de type couche mince ou détecteurs. Le SyMMES et le LMGP appartiennent à l’Université Grenoble Alpes et accueillent des équipes largement internationales. Ce projet sera par ailleurs mené en collaboration avec une entreprise industrielle locale de recyclage.
On recherche une/un étudiant titulaire d’un Master 2 en chimie ou physique avec des compétences en nanomatériaux, électrochimie ou physico-chimie, et en sciences de base pour l’énergie, avec un fort goût de l’innovation et du travail collaboratif. Une bonne maitrise de l'anglais est importante.
Optimisation de la durabilité d’alliages métalliques à haute température : exploration de nouvelles conditions d’oxydation
Le projet exploratoire OPTIMIST a pour objectif d’augmenter la durée de vie des alliages métalliques (alumino- et chromino-formeurs) par formation d’une couche d’oxyde protectrice comme cela est quasiment toujours le cas pour protéger la corrosion des alliages. La grande originalité d’OPTIMIST consistera à former une couche d’oxyde possédant un minimum de défauts structuraux 0D (défauts ponctuels) et 2D (joints de grains). Cet objectif reposera sur deux stratégies distinctes : la première consistera à former une couche d’oxyde dite endogène, c’est-à-dire par pré-oxydation du substrat en choisissant minutieusement les conditions de pré-oxydation (température, milieu oxydant, pression partielle en oxygène) dans deux types de Rhines Pack spécifiquement développés au CEA/DES et à l’IJL, la seconde consistera à former une couche d’oxyde dite exogène, c’est-à-dire créée par une technique de dépôt : le HiPIMS récemment mis en service au CEA/INSTN. Différentes conditions de pré-oxydation (pour la couche endogène) et de procédé (pour la couche exogène) seront investiguées puis leurs défauts 0D et 2D seront caractérisés au SIMaP par un couplage inédit de techniques de pointe tant structurale (TEM-ASTAR) que chimique (sonde atomique, SIMS, nano-SIMS) et électronique (photoélectrochimie PEC). Enfin ces échantillons caractérisés seront corrodés dans deux milieux (sous air et en milieux sels fondus) à hautes températures pour juger de l’efficacité de la protection par rapport à une pré-oxydation usuelle. Les étapes de croissance de l’oxyde, sa stœchiométrie et sa microstructure (taille et forme des grains, nature des joints de grains) seront ainsi identifiées en fonction des conditions de croissances endo et exogènes de sorte à les maîtriser pour parvenir à une couche d’oxyde contenant le moins de défauts possible.
Développement et étude d'un matériau composite laminé intégrant des nanoTubes de carbone pour application en réservoirs cryogéniques
L'utilisation de matériaux composites dans le domaine spatial a conduit à de grandes améliorations de poids. Pour continuer à réaliser un gain de poids significatif, le réservoir cryogénique composite est la prochaine application technologique à atteindre en remplaçant les réservoirs d'ergols cryogéniques en alliage métallique actuels. Les matériaux composites à matrice organique renforcée plus légers (au moins aussi performants d'un point de vue mécanique, thermique, chimique et de résistance à l'inflammation) sont une cible réaliste à atteindre qui a été explorée ces dernières années. De nombreuses approches de recherche tendent à répondre à ce verrou technologique, mais les potentialités des nanotubes de carbone (NTC) en termes de propriétés mécaniques et physiques, doivent être explorées plus en profondeur.
Une première phase d'évaluation de l'intérêt des NTC pour les applications spatiales (collaboration CNES/CEA/I2M/CMP Composite) a été menée afin d'associer des NTC à une matrice cyanate-ester dans des matériaux composites stratifié suivant trois procédés et protocoles de développement de composites stratifiés : (i) le transfert de mats de NTC alignés par pressage à chaud, (ii) la dispersion de NTC enchevêtrés mélangés à de la résine, ou (iii) la croissance de nanotubes alignés directement sur le pli sec. Connaissant les sollicitations mécaniques et thermiques, l'objectif est de démontrer l'efficacité des NTC et l'influence de leurs caractéristiques sur la tolérance aux dommages du matériau apportée par la fonctionnalisation des NTC et consiste à retarder le processus de fissuration du composite à proximité de la couche de NTC et ainsi à bloquer la percolation du réseau de fissuration qui conduit à la perte d'étanchéité. Pour le procédé de développement privilégié identifié, l'objectif de ce travail doctoral est désormais de consolider la fonctionnalisation du matériau par des NTC (forme, densité, etc.) et la compréhension du comportement mécanique (à température ambiante et à basse température) pour le développement du matériau feuilleté intégrant des NTC.
Connaissant l'application finale potentielle comme réservoir cryogénique ou pour l'amélioration de la durabilité des matériaux structuraux dans une double application, des essais pertinents seront réalisés pour démontrer l'impact en termes de développement de dommages et d'étanchéité par rapport au même matériau sans NTC.
Potentiels réactifs par réseaux de neurones : optimisation de l'acquisition des données d'entraînement et application aux réactions mécanochimiques
La décomposition spontanée de molécules organiques lors de leur synthèse, manipulation, ou stockage, pose de sérieux problème de sécurité dans le cas de matériaux énergétiques. En plus de l'activation thermique, de récentes études montrent que les déformations intramoléculaires telles que celles induites par le passage d'une onde de choc influencent la réactivité chimique et peuvent modifier les mécanismes de décomposition. Les études à l'échelle moléculaire de ces phénomènes représentent un défi car elles nécessitent à la fois des calculs de chimie quantique pour décrire la formation et la rupture de liaison chimique, mais aussi des effets de phase condensée.
Pour remédier à cela, nous proposons le développement et l'application d'un potentiel réactif par réseaux de neurones (MLIP) pouvant combiner ces deux aspects. En particulier, nous visons à avancer significativement la méthodologie de construction de base de données contenant des structures moléculaires hors-équilibre, telles que celles pouvant être rencontrées lors de réactions chimiques complexes activées thermiquement ou mécaniquement. Ce potentiel réactif sera ensuite utilisé pour étudier la décomposition d'un matériaux modèle dans différentes conditions de pression et de température. Les outils et connaissances développés serviront à la fois aux études de mécanismes de décomposition de molécules énergétiques mais aussi à la communauté de mécanochimie.
Etude de l’influence de la microstructure d’un acier 316L élaboré par procédé L-PBF sur ses propriétés mécaniques : caractérisation et modélisation du comportement en fluage et en fatigue
Les recherches sur la fabrication additive pour l'industrie nucléaire montrent que la production de composants en acier austénitique 316L par fusion laser sur lit de poudre (L-PBF) présente des défis techniques, notamment le contrôle des procédés, les propriétés des matériaux, leur qualification et la prédiction de leur comportement mécanique en conditions de service. Les propriétés finales diffèrent des procédés traditionnels, présentant souvent une anisotropie qui remet en question les normes de conception existantes.
Ces différences sont liées à la microstructure unique résultant du procédé L-PBF. La maîtrise de la chaîne de fabrication, de la consolidation à la qualification, nécessite une compréhension des interactions entre les paramètres du procédé, la microstructure et les propriétés mécaniques.
L'objectif de la thèse est d'étudier les relations entre la microstructure, la texture et les propriétés mécaniques de l'acier 316L fabriqué par L-PBF, sous sollicitations statiques ou cycliques. Cela comprend l'influence sur les propriétés de fluage et de fatigue, et le développement d'un modèle de prévision du comportement mécanique. A partir d'échantillons d'acier 316L avec des microstructures spécifiques consolidés par L-PBF, l'étude proposée vise à établir des liens entre la microstructure et les propriétés mécaniques pour mieux prédire le comportement en service.
Synthèses innovantes de perovzalates et rationalisation du mécanisme de formation par méthodes de synchrotron
Les « perovzalates » sont une nouvelle famille de perovskites hybrides à base d’oxalate, avec une dizaine d’exemples répertoriés depuis 2019 (AILi3MII(C2O4)3 , avec A = K+, Rb+, Cs+, NH4+; M = Fe2+, Co2+, Ni2+). Tout comme les perovskites conventionnelles, elles sont potentiellement intéressantes pour d’innombrables applications (catalyse, optique, solaire etc.), en présentant des avantages supplémentaires liés à l’anion oxalate, qui permet d’incorporer des cations plus volumineux que dans les autres pervovskites hybrides, tout en préservant un structure cristalline semblable aux perovskites d’oxyde.
Cependant, cette classe de nouveaux matériaux est encore à peine explorée, et les synthèses loin d’être maitrisées : les quelques rapports à ce jour produisent systématiquement des mélanges de phases, et portent sur des monocristaux prélevés dans les solutions hétérogènes. Dans ce contexte, la problématique majeure est d’arriver à synthétiser une classe étendue de perovzalates pures.
Cette thèse relève ce défi en exploitant une propriété découverte au laboratoire : la cristallisation des oxalates de métaux par coprécipitation dans l’eau passe par des « émulsions minérales » transitoires, c’est-à-dire des nano-gouttelettes riches en réactifs qui se séparent de l’eau. L’originalité de ce sujet de thèse est d’exploiter la nanostructuration apportée par ces émulsions minérales, et de tester notamment à l’aide de techniques nanotomographiques accessibles en synchrotron si elles permettent de confiner les cations jusqu’à la cristallisation.
Exploration de nanomatériaux à base de diamant pour la (sono)photocatalyse : Applications pour la production d'hydrogène et la réduction du CO2
Les nanodiamants (ND) sont de plus en plus étudiés comme semiconducteurs pour la photocatalyse, notamment grâce aux positions très spécifiques de leurs bandes de valence et de conduction qui peuvent être modulées. Ainsi, il a été récemment démontré que les ND peuvent produire de l’hydrogène sous lumière solaire avec une efficacité similaire à celle des nanoparticules de TiO2. D'autres études montrent également la possibilité de photogénérer des électrons solvatés à partir de certains NDs pour la réduction du CO2 ou la dégradation de polluants tenaces.
Dans l’optique d’accélérer le développement des technologies "solar-to-X" à base de nanodiamants, nous proposons dans le cadre de cette thèse d’intégrer ces derniers en tant que photocatalyseurs dans une approche sonophotocatalytique. En effet, la cavitation acoustique, générée par les ultrasons, peut améliorer le transfert de masse en dispersant les particules catalytiques et permet de produire des espèces réactives additionnelles (radicaux hydroxyles, superoxydes). Elle émet également une sonoluminescence qui peut favoriser la photogénération de charges et devrait limiter la recombinaison des porteurs de charge.
La première phase du travail portera sur la synthèse de photocatalyseurs à base de nanodiamants, en explorant diverses chimies de surface et leur association avec des co-catalyseurs. Des méthodes de synthèse classique et sonochimique seront utilisées, des études préliminaires ayant montré que la sonochimie peut modifier efficacement la chimie de surface des ND. Les propriétés photocatalytiques de ces matériaux seront d'abord évaluées, menant ensuite à la conception d'une cellule sonophotocatalytique . Des études approfondies exploreront les synergies entre sonochimie et photocatalyse pour la production d’hydrogène ou la réduction du CO2. Ce travail de thèse se déroulera dans le cadre d'une collaboration entre le NIMBE situé sur le centre CEA de Saclay et l'ICSM situé sur le centre CEA de Marcoule.
Fabrication de membranes nanocomposites plasmoniques pour la détection de biomolécules
La détection de certaines biomolécules en faibles quantités constiue bien souvent un défi. Récemment, les nanomatériaux ont permis d’obtenir de nouveaux matériaux aux propriétés optiques permettant de répondre à un telle problématique, en particulier les nanomatériaux plasmoniques.
Dans ce projet, nous proposons la synthèse d’un type particulier de nanocomposites obtenus par l’insertion de nanoparticules (NPs) plasmoniques au sein de membranes polymères formées par track-etching. Le contrôle de la réponse plasmonique sera effectué grâce au contrôle précis de la synthèse in situ des NPs directement dans les nanopores de la membrane, en utilisant des méthodes chimiques et physico-chimiques. En particulier, la réduction in situ des précurseurs métalliques par irradiation (faisceau d’électrons, rayons ?) sera étudiée. Des faisceaux ionisants (ions lourds accélérés) serviront aussi à structurer la matrice polymère sous forme de membrane, avec une porosité contrôlée. Les relations entre les paramètres structuraux du composite et ses propriétés optiques seront étudiées avec rigueur, afin de déterminer le matériau idéal pour la détection de biomolécules, qui sera testé sur des molécules modèles telles que des protéines ou des particules-modèles de virus, dans la partie finale du projet.
Influence du dopage au chrome du combustible UO2 sur la spéciation des produits de fission en conditions accidentelles
Le développement des réacteurs nucléaires s’inscrit dans une démarche d’amélioration de la sûreté, avec par exemple le déploiement de combustibles nucléaires à propriétés améliorées vis-à-vis de leur comportement en conditions accidentelles : les combustibles nucléaires dits E-ATF (Enhanced Accident Tolerant Fuel). Parmi les combustibles E-ATF envisagés, le combustible UO2 dopé avec Cr2O3 est développé par l’opérateur industriel FRAMATOME. En revanche, très peu de données existent sur le comportement des produits de fission d’un combustible dopé Cr en conditions accidentelles.
La thèse propose de mettre au point un procédé de synthèse d’un combustible UO2 dopé Cr simulant le combustible irradié pour étudier le comportement des éléments (Cr et produits de fission) en température et sous différentes pressions partielles d’oxygène. La méthodologie repose sur une approche expérimentale couplant synthèse de matériaux modèles et caractérisation chimique approfondie, complétée par une approche théorique (calculs thermodynamiques) permettant de dimensionner les séquences thermiques et conforter les mécanismes réactionnels proposés.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
Le doctorant aura l’opportunité de se former à des techniques pointues de caractérisation des sciences des matériaux céramiques, d’accéder à des expériences sur grands instruments (synchrotron) et de participer à des échanges avec le monde académique (CNRS, Universités, JRC). Il pourra valoriser ses travaux à travers des publications et des participations à congrès.
A l’issue de cette thèse, le doctorant aura acquis des compétences en science des matériaux et en caractérisation du solide qu’il pourra mettre à profit dans différents domaines des matériaux, ainsi qu’une expérience dans le milieu nucléaire d’intérêt pour l’industrie nucléaire.