Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma
L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse
élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse
par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown
Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur
stoechiométrie.
Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier
l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être
développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de
tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de
structure complexe), d'identifier et de quantifier automatiquement les éléments présents.
En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la
densité de nanoparticules, la distribution de taille ou de forme.
Etude du comportement en début de vie du combustible MOX à isotopie dégradée.
La France a fait le choix d'un cycle du combustible nucléaire dit « fermé ». Il consiste à traiter le combustible usé pour récupérer ses matières valorisables (uranium et plutonium), tandis que ses autres composés (produits de fission et actinides mineurs) constituent les déchets ultimes. Le combustible UO2 irradié en Réacteurs à Eau Pressurisée (REP) est ainsi aujourd’hui retraité pour produire du plutonium (PuO2), réutilisé ensuite sous forme de combustible MOX (Mixed Oxide) lui-même irradié en REP : on parle de monorecyclage du plutonium. La solution de multi-recyclage des matières via l’utilisation de combustibles contenant du Pu issu du traitement d’assemblages MOX usés, est une perspective actuellement étudiée au CEA. Ce plutonium multi-recyclé contient une plus forte proportion d’isotopes à forte activité alpha (Pu238,Pu240,Pu 241/Am241), entraînant une auto-irradiation alpha plus sévère que dans les MOX actuels [1]. Ceci exacerbe certains phénomènes physiques [2-5] (gonflement du combustible lié à la précipitation de l’hélium et à la création de défauts cristallins, baisse de la conductivité thermique)[6-8], pouvant altérer son comportement en réacteur.
La thèse proposée vise à étudier l’impact de ces phénomènes sur le comportement en début d’irradiation de combustibles MOX, via une approche expérimentale couplée à la modélisation. Des traitements thermiques seront utilisés pour analyser les mécanismes de guérison des défauts cristallins et le comportement de l’hélium. Diverses techniques expérimentales permettant de caractériser la structure et microstructure (diffraction X, MEB, spectroscopie Raman, microsonde), les densités de défauts (MET), le relâchement d’hélium (KEMS), la reproduction du gradient thermique (laser CLASH) et la mesure de conductivité thermique (laser LAF) seront utilisées. Les résultats alimenteront des simulations pour modéliser la microstructure et les propriétés thermiques.
Cette étude transverse et pluridisciplinaire permettra de mieux appréhender les phénomènes mis en jeu lors de la première montée en puissance pour des combustibles endommagés par l’auto-irradiation alpha, avec un accent tout particulier sur l’impact de l’He produit par décroissance.
Vous serez basé au Laboratoire d'Etude de Conception et d'Irradiation Multi filière au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone du CEA/Cadarache dont vous dépendrez. Vous collaborerez également avec le Laboratoire d'analyses chimiques et caractérisation des MATériaux (LMAT)du CEA/Maroule ainsi que le centre de recherche européen (JRC) de Karlsruhe pour la partie expérimentale. Vous pourrez valoriser vos résultats au travers de publications scientifiques et participations à des congrès. Vous aurez l’occasion d’apprendre ou de vous perfectionner dans plusieurs techniques réutilisables dans d’autres contextes, applicables à de nombreux domaines de la science des matériaux et de l’ingénieur.
[1]O. Kahraman, thésis, 2023.[2]M. Kato et al., J Nucl Mater, 393 (2009) 134–140.[3]L. Cognini et al., Nuclear Engineering and Design 340 (2018) 240–244.[4] T. Wiss et al., Journal of Materials Research 30 (2015) 1544–1554.[5]D. Staicu et al., J Nucl Mater 397 (2010) 8–18.[6] T. Wiss et al.,Front. Nucl. Eng. 4 (2025) 1495360.[7]E.P. Wigner, J. Appl. Phys. 17 (1946) 857–863.[8]D. Staicu et al., Nuclear Materials and Energy 3–4 (2015) 6–11.
Concevoir des outils d’intelligence artificielle pour traquer le relâchement des produits de fission hors du combustible nucléaire.
Le Laboratoire d'Analyse de la MIgration des Radioéléments (LAMIR) au sein de l'Institut de REcherche sur les Systèmes Nucléaires (IRESNE) du CEA Cadarache a développé un ensemble de méthodes de mesure pour caractériser le relâchement des produits de fission hors du combustible nucléaire lors d'un transitoire thermique, dont en particulier un dispositif d'imagerie in situ operando. L'ensemble des données obtenues nécessite l'utilisation d'outils numériques de traitement prenant en compte les spécificités de l'instrumentation en milieu nucléaire et les informations recherchées sur les mécanismes physiques.
L'objectif de la thèse sera de développer une approche optimisée du traitement de ces données en s'appuyant sur l'état de l'art des méthodes d'Intelligence Artificielle (IA).
Dans un premier temps, le travail se focalisera sur le traitement des images acquises pendant la séquence thermique pour détecter les mouvements de matière. On cherchera un dispositif de traitement optimal au sens d’un critère numérique choisi rigoureusement.
Dans un second temps, cette approche sera généralisée à l'ensemble des mesures expérimentales obtenues lors d'une séquence thermique. Idéalement, on vise à obtenir un outil qui puisse aider au diagnostic en temps réel d'une expérience.
La thèse sera menée dans un cadre collaboratif entre le LAMIR qui possède une expérience reconnue pour ce qui est de l'analyse du comportement du combustible nucléaire et l'imagerie des phénomènes liés à ces analyses et l’Institut Fresnel de Marseille qui a développé une solide expérience en matière d'analyses d'images et d'IA. Ce cadre multidisciplinaire permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.
Elaboration d’un combustible d’oxyde d’uranium dopé au manganèse : mécanismes de frittage et évolutions microstructurales
Ces travaux de thèse s’intègrent dans le cadre du développement de combustibles nucléaires aux propriétés améliorées par l’ajout d’un dopant, pour les réacteurs des centrales nucléaires à eau pressurisée.
Dans les réacteurs nucléaires, le combustible est constitué de pastilles de dioxyde d'uranium (UO2) empilées dans des gaines en alliage de zirconium. Ces pastilles, en contact avec la gaine, doivent résister à des conditions extrêmes de température et de pression. L’une des problématiques est de limiter les interactions chimiques pouvant avoir lieu lors de migration de produits de fission du centre vers la périphérie de la pastille avec la gaine. Un exemple représentatif de ce type de phénomène est la corrosion sous contrainte assistée par l’iode, qui peut apparaître lors de transitoires accidentels.
Une stratégie consiste à doper la céramique UO2 par un oxyde métallique afin de piloter la microstructure du matériau mais aussi de modifier son comportement thermochimique afin de limiter aussi bien la mobilité que le caractère corrosif des gaz de fission. Parmi les différents dopants possibles, l’oxyde de manganèse (MnO) constitue une option prometteuse et une alternative potentielle à l’oxyde de chrome (Cr2O3) qui est à ce jour la solution mature industriellement.
Cette thèse s’intéressera à la compréhension du rôle du manganèse sur le frittage de l’UO2, et plus particulièrement la microstructure ainsi que les propriétés finales du combustible. Elle se déroulera au centre CEA de Cadarache, au sein de l’Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (IRESNE).
Au cours de ces trois années, vous serez accueilli(e) au sein du Laboratoire dédié à l’étude des Combustibles à base d’Uranium (LCU) du Département d’étude des combustibles (DEC), en étroit lien avec le Laboratoire de Modélisation du Comportement des Combustibles (LM2C).
Ces travaux de recherche alliant expérimentation et modélisation pourront ainsi se structurer autour de trois grandes problématiques :
• l’étude de l’influence des conditions de fabrication sur la microstructure de l’UO2 dopé Mn,
• l’étude de l’impact du dopage sur la création de défauts dans l’UO2 et les propriétés associées,
• La contribution à la modélisation thermodynamique du système
U-Mn-O sur la base d’essais expérimentaux.
Vous acquerrez durant cette thèse une expérience solide dans la fabrication et la caractérisation avancée de matériaux innovants, en particulier dans le domaine des céramiques pour l’industrie nucléaire. La valorisation de vos travaux pourra s’effectuer au travers de publications, de brevets, de participations à des congrès nationaux et internationaux.
Vous développerez de nombreuses compétences techniques directement valorisables dans des domaines variés de l’industrie ou de la recherche (énergie, micro-électronique, industries chimique et pharmaceutique).
Caractérisation des mécanismes radiolytiques dans les systèmes eau tritiée–zéolithe en conditions d’entreposage
L’exploitation des installations tritium de Valduc produit des effluents liquides faiblement tritiés, stockés sous forme adsorbée sur de la zéolithe 4A pour des raisons opérationnelles. La compréhension des mécanismes d’auto-radiolyse de cette eau confinée est essentielle pour optimiser l’entreposage.
Plusieurs thèses ont déjà étudié ces mécanismes, en combinant expériences et modélisations. Les premiers travaux ont montré qu’en dessous de 13 % d’hydratation, les gaz radiolytiques H2 et O2 peuvent se recombiner dans la zéolithe. Les études suivantes, fondées sur des calculs DFT et de dynamique moléculaire, ont précisé les sites d’adsorption et la mobilité des gaz. Elles ont mis en évidence un seuil d’hydratation (13–15 %) au-delà duquel la diffusion des gaz devient très faible, cohérent avec l’arrêt expérimental de la recombinaison. Toutefois, ces simulations reposent sur des modèles idéalisés.
La nouvelle thèse proposée vise à recentrer le projet sur l’expérimental afin de mieux coller aux conditions réelles d’entreposage. Elle commencera par une caractérisation détaillée de la zéolithe utilisée industriellement. Des réservoirs eau-zéolithe seront irradiés pour simuler l’effet du tritium, et analysés par RMN et éventuellement par Resonance Paramagnetique Electronique (RPE) pour détecter les espèces réactives. Les résultats expérimentaux pourront alimenter un modèle macroscopique (Monte Carlo Cinétique, KMC) également développé précédemment afin de prédire l’évolution du système et d’identifier des optimisations possibles pour le stockage. Le travail sera mené principalement au laboratoire NIMBE (CEA-CNRS) avec une collaboration en simulation à Besançon et des échanges réguliers avec le CEA Valduc.
Synthèse et dissolution de SIMMOX homogènes préparés par voie hydroxyde
La dissolution du combustible nucléaire usé constitue une première étape essentielle de son retraitement. La cinétique de dissolution des (U,Pu)O2 (MOX) irradié constitue actuellement un frein à leur retraitement à l’échelle industrielle et nécessite donc une meilleure compréhension des mécanismes mis en jeux pour lever ce verrou industriel. Cependant, l’étude de la dissolution d’un combustible MOX irradié afin d’identifier et modéliser les différentes étapes et mécanismes associés se heurte à la forte radiotoxicité d’un tel matériau et de la représentativité des échantillons disponibles. Afin de simplifier ces études et d'établir des modèles représentatifs, de nombreux essais ont été réalisés sur des composés modèles (UO2 et MOX non irradiés, par exemple). Parmi eux, des composés SIMfuel (U,Pu)O2 dopés jusqu’à 11 produits de fission visent à représenter la complexité chimique des combustibles irradiés. L’approche classique de fabrication de SIMfuel par mélange de réactifs en phase solide nécessite de frittage des pastilles de combustible à haute température (>1600°C). Afin de reproduire le comportement des produits de fission (réduction-oxydation, répartition, etc.) pour des combustibles irradiés à des températures plus faibles, une approche alternative a été développée en s'appuyant sur la synthèse d'oxydes par la voie hydroxyde. Cette méthode permet la précipitation simultanée et homogène de nombreux cations métalliques et d'abaisser significativement la température de frittage. Cette approche a déjà permis l’étude de SIMfuel intégrant des terres rares, des platinoïdes et du molybdène dans des conditions représentatives. Cependant, cette approche n’a encore jamais été mise en œuvre pour la synthèse de SIMfuel contenant à la fois du plutonium et l’ensemble des produits de fission pertinents pour l’étude de la dissolution.
L’objectif de cette thèse est de mettre en œuvre de telles synthèses, en s’appuyant sur les résultats récemment obtenus concernant la synthèse de MOx par voie hydroxyde. À cette fin, des SIMfuel seront synthétisés afin de représenter des combustibles de type MOx usés (SIMMOx). Pour représenter les différentes zones présentes dans le combustible usé, des SIMMOx avec différents ratios Pu/(U+Pu) seront considérés. Ces SIMMOx feront l’objet d’essais de dissolution pour caractériser leur comportement lors de cette étape.
Nanoplaquettes de semi-conducteurs III-V
Les nanoplaquettes semi-conducteurs (NPLs) sont une classe de nanostructures bidimensionnelles qui possèdent des propriétés électroniques et optiques distinctes de celles des quantum dots sphériques (QDs). Ils présentent un confinement quantique fort dans une seule dimension, l'épaisseur, qui peut être contrôlée à la monocouche près par des méthodes de synthèse chimique en solution. De ce fait les NPLs émettent une lumière avec une largeur spectrale extrêmement étroite. En même temps, ils présentent un coefficient d’absorption très élevé. Ces propriétés en font des candidats idéals pour différentes applications (diodes électroluminescentes pour des écrans à consommation électrique réduite, photocatalyse, émetteurs à photons uniques, lasers,…).
Pour l’instant seule la synthèse de NPLs de chalcogénures de métaux est maîtrisée. Ces matériaux présentent soit des éléments toxiques (CdSe, HgTe, etc.) soit une grande largeur de bande interdite (ZnS, ZnSe). Pour ces raisons le développement des méthodes de synthèse pour des NPLs de semi-conducteurs III-V, tel que l’InP, InAs et InSb présente un grand enjeu. Dans cette thèse nous développerons des nouvelles approches synthétiques pour la croissance des NPLs d’InP, explorant différentes voies et utilisant des caractérisations in situ ainsi que la méthode de plans d’expérience assistée par machine learning. Des simulations numériques seront utilisées pour déterminer la réactivité des précurseurs et pour modéliser les mécanismes induisant la croissance anisotrope.
Suivi et modélisation de l'évolution des propriétés microstructurales au cours de la fabrication du combustible MOX : impact de la chamotte
Le combustible nucléaire MOX (Mixed OXide), céramique obtenue à partir d’un mélange d’oxydes d’uranium et de plutonium, constitue une alternative stratégique pour la valorisation du plutonium provenant du retraitement des combustibles usés. Les pastilles de MOX sont fabriquées industriellement par un procédé de métallurgie des poudres couplé à une densification du matériau avec un frittage à haute température. Les rebuts de production sont réintroduit dans le procédé sous forme de poudre chamottée. Cependant, l’influence de la teneur et de la nature de cette chamotte sur la stabilité microstructurale du matériau reste encore mal connue, notamment lors des étapes de pressage et de frittage. Ceci constitue un élément clé à la fois sur la tenue mécanique et le comportement en réacteur des combustibles MOX. Une meilleure compréhension de ces phénomènes, associée à une modélisation fine, permettrait d’optimiser les procédés industriels et d’améliorer à terme la fiabilité de ces combustibles.
L’objectif de ce projet de thèse est d’étudier et de modéliser l’évolution des propriétés microstructurales du combustible MOX en fonction de la teneur et de la nature de la chamotte ajoutée lors de la fabrication. La stratégie de la thèse s’appuiera sur une approche intégrée combinant une étude expérimentale à des simulations numériques. Elle repose sur une caractérisation multi-échelle de la microstructure couplant des techniques d’imagerie et de spectroscopie et sur une reconstruction tridimensionnelle de la microstructure à partir d’images 2D expérimentales. L’objectif étant à terme de relier les propriétés élastiques du matériau à sa microstructure. Ces travaux s’appuieront sur une approche couplant expérience et modélisation, qui conjuguera l’expertise de l'équipe encadrante dans la mise en œuvre d’expérimentations sur matériaux plutonifères et dans la modélisation numériques (modélisation micromécanique, calcul FFT).
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales ainsi que des méthodes pointues de modélisation numérique sur matériaux céramiques. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.
Développement de supports fonctionnalisés pour la décontamination de surfaces complexes contaminées par des agents chimiques
Dans le cas d’une contamination par un agent chimique toxique, la prise en charge commence par une décontamination d’urgence rapide. Les personnes intervenant sur le terrain doivent tenir compte du risque de transfert de contamination, notamment en portant des tenues de protection adaptées. Ces tenues, ainsi que le petit matériel utilisé, doivent ensuite être décontaminés avant d’envisager le déshabillage pour éviter l’auto-contamination. La procédure comprend une phase de décontamination « sèche » généralement par application de poudres (souvent des argiles) qui sont ensuite essuyées à l’aide d’un gant ou d’une éponge. Cependant, ce dispositif ne neutralise pas les contaminants chimiques et la poudre se ré-aérosolise facilement, l’utilisation est donc limitée aux milieux non confinés et aérés. L’objectif est de cette thèse est d’élaborer une technologie alternative, pour la décontamination de surfaces complexes (tenues, petit matériel). Nous proposons d’étudier la fonctionnalisation de différents supports (tels que des gants, lingettes, microfibres, éponges, hydrogels…) par des particules adsorbantes (zéolithes, oxydes céramiques, MOFs…). Une étude bibliographique préliminaire permettra de sélectionner les adsorbants et supports les plus adaptés pour la capture d’agents chimiques modèles. Les travaux se focaliseront sur la préparation des supports, et différentes voies d’incorporation des particules dans/sur ces supports seront comparées. Les matériaux seront caractérisés (taux d’incorporation, homogénéité, tenue mécanique, non ré-aérosolisation…), puis leurs propriétés de transfert, de sorption et d’inactivation vis-à-vis de molécules modèles seront évaluées.
Ce sujet s'adresse à des chimistes, dynamiques, motivés par la pluridisciplinarité du sujet (chimie des matériaux minéraux et/ou polymères, caractérisation du solide et chimie analytique), et ayant un attrait particulier pour le développement de dispositifs expérimentaux. Le/la candidat(e) évoluera au sein du Laboratoire des Procédés Supercritiques et Décontamination sur le site de Marcoule, et bénéficiera de l’expertise du laboratoire en décontamination et en élaboration de matériaux adsorbants, ainsi que du soutien et de l'expertise de l'ICGM à Montpellier sur les polymères fonctionnels et les hydrogels. L’étudiant(e) interagira avec les techniciens, ingénieurs, doctorants et post-doctorants du laboratoire. Le/la doctorant(e) sera impliqué(e) dans les différentes étapes du projet, le reporting et la publication de ses résultats, et la présentation de ses travaux dans des conférences. Il/Elle développera de solides connaissances dans les domaines du nucléaire et de l’environnement, ainsi qu’en gestion de projet.
Propriétés physico-chimiques des verres photovoltaïques (PV) contenant de l'antimoine (Sb)
La thèse proposée s’inscrit dans le cadre du projet ANR GRISBI (2026-2030), qui vise à optimiser le recyclage du verre présent dans les panneaux photovoltaïques. Ces verres, très majoritairement fabriqués en Chine, sont dopés en oxyde d’antimoine (Sb2O3) afin de garantir une bonne transparence du verre, tout en minimisant les coûts de production. Cependant, cet antimoine empêche le recyclage de ces verres dans l’industrie européenne du verre plat, qui aurait pourtant besoin de cet apport de matière secondaire pour réduire son impact environnemental, entre-autres ses émissions de gaz à effet de serre (cf. l’objectif de neutralité carbone fixé par les Accords de Paris en 2015). Afin de rendre possible le recyclage du verre PV dans l’industrie du verre plat, il est donc nécessaire de mieux comprendre les propriétés physico-chimiques de l’antimoine dans le verre, et plus généralement dans le procédé float, qui met en jeu une interface verre chaud / étain liquide.
L’enjeu de la thèse réside ainsi dans la détermination des équilibres redox entre les différentes espèces multivalentes présentes dans les verres PV, en particulier entre les couples Sb2O3/Sb et Fe2O3/FeO. L’étude consistera donc à élaborer des verres présentant différentes teneurs en Sb2O3, puis à déterminer les mécanismes d’incorporation de l’antimoine dans les verres, ainsi que les conditions de température et de pO2 conduisant à la réduction de Sb3+ en Sb0. Les résultats expérimentaux, basés sur des caractérisations matériaux de type MEB, DRX, EXAFS, XANES, permettront de compléter les bases de données thermodynamiques, et de proposer une méthodologie permettant le recyclage des verres PV dopés à l’antimoine dans la production de verre plat.
La thèse se déroulera au CEA Marcoule, en collaboration avec l’IMPMC (Sorbonne Université), deux laboratoires dont les expertises dans le domaine des matériaux vitreux sont reconnues à l’international. L’ensemble des travaux sera réalisé sur des verres élaborés par le(la) doctorant(e), et leur caractérisation s’appuiera principalement sur les outils disponibles au sein du CEA et de l’IMPMC. Un profil en Sciences des Matériaux est recherché. Le sujet permettra au doctorant de pouvoir valoriser in fine un parcours de recherche appliquée.