Modélisation à l’échelle atomique de la ségrégation induite par l’irradiation dans les alliages Zr(Nb)

Les gaines des crayons combustibles en alliage de zirconium constituent la première barrière de sûreté des réacteurs nucléaires à eau pressurisée. Les propriétés mécaniques ainsi que les phénomènes d’oxydation ou de croissance sous irradiation sont contrôlés par la microstructure de ces alliages. Afin de permettre une utilisation plus flexible des réacteurs nucléaires dans le mix énergétique tout en garantissant l’intégrité des gaines combustibles en conditions normales de fonctionnement et en conditions accidentelles, il est essentiel de comprendre en détail l’évolution de la microstructure sous irradiation. De nombreuses études mettent en évidence un rôle important du niobium sur cette évolution microstructurale. Par exemple, le couplage de flux de diffusion entre solutés (Nb) et défauts ponctuels créés par l’irradiation génère des ségrégations locales en Nb, ainsi que des précipités qui ne sont pas observés hors irradiation. La modélisation à l’échelle atomique apporte des informations complémentaires aux observations expérimentales qui permettent de confirmer ou d’infirmer certains scénarios d’évolution. L’objectif de cette thèse est d’appliquer aux alliages de zirconium les méthodes et outils de modélisation développés pour étudier les effets d’irradiation dans les alliages ferritiques, et tout particulièrement les phénomènes de ségrégation induite sous irradiation. Nous réaliserons des calculs de structure électronique dans l’approximation de la théorie fonctionnelle de la densité pour quantifier de façon aussi exhaustive que possible les interactions entre le niobium et les défauts ponctuels. À partir de ces données, nous calculerons les coefficients de transport du système ce qui permettra d’avoir une première discussion quantitative des couplages entre solutés et défauts ponctuels et des effets de ségrégation induite sous irradiation.

Etude expérimentale de l’évolution de la microstructure et de la microchimie, à l’échelle nanométrique, des alliages de zirconium sous irradiation

Les alliages à base de zirconium sont utilisés comme matériau de gainage du combustible nucléaire pour les réacteurs à eau pressurisée. En effet, les alliages de zirconium présentent une faible section efficace d'absorption des neutrons thermiques et possèdent de bonnes propriétés mécaniques ainsi qu’une grande résistance à la corrosion. Malgré plusieurs décennies de recherche, de nombreuses questions demeurent concernant l’évolution de la microstructure et de la microchimie des alliages de zirconium sous irradiation et leurs conséquences sur les propriétés de ces matériaux en réacteur.
L'irradiation neutronique dans les matériaux cristallins produit des cascades de déplacements qui génèrent de grandes quantités de défauts ponctuels, lacunes et interstitiels, qui s’agglomèrent pour former des amas. De plus, les éléments d’alliage se redistribuent sous irradiation sous l’influence de cette concentration élevée de défauts ponctuels. Dans les alliages Zr1%Nb on note notamment l’apparition sous irradiation d’une grande densité de nano-précipités riches en niobium. Ce phénomène surprenant semble avoir des conséquences importantes sur le comportement en fluage post-irradiation ou bien sur le comportement en corrosion en réacteur.
Ce travail de thèse, principalement expérimental, a en particulier pour objectif de mieux comprendre ce phénomène de précipitation sous irradiation des nano-précipités riches en niobium. Un alliage de zirconium Zr1%Nb sera irradié par des ions, à différentes doses d’irradiation et différentes températures, puis sera caractérisé par deux techniques expérimentales à une échelle très fine : la microscopie électronique en transmission (MET) et la sonde atomique tomographique (SAT). Ces deux techniques permettront d’accéder à la répartition des éléments chimiques dans le matériau à l’échelle atomique ainsi qu’à la caractérisation des amas de défauts ponctuels présents. Grâce à ces analyses microstructurales à l’échelle nanométrique, un scénario sera proposé pour expliquer le mécanisme de précipitation sous irradiation. Ses conséquences sur le comportement macroscopique seront également discutées. Forts de cette meilleure compréhension des mécanismes à l’échelle microscopique, les performances des alliages de zirconium en réacteur pourront être encore améliorées.

Etude expérimentale et simulation numérique des mécanismes de déformation et du comportement mécanique des alliages de zirconium après irradiation

La gaine des crayons combustibles des Réacteurs à Eau Pressurisée, fabriquée en alliages de zirconium, constitue la première barrière de confinement du combustible nucléaire. En réacteur, la gaine subit un dommage d’irradiation qui affecte ses propriétés mécaniques. Après leur séjour en réacteur, les crayons combustibles sont transportés et entreposés. Lors de ces différentes phases, le dommage d’irradiation dans la gaine est partiellement restauré conduisant à une nouvelle évolution des propriétés mécaniques du matériau. Toutes ces évolutions restent pour l’heure mal comprises.
L'objectif de ce travail de thèse est de mieux comprendre les mécanismes de déformation et le comportement mécanique après irradiation, et après restauration partielle, des alliages de zirconium. L’objectif opérationnel de cette étude est de mieux prédire le comportement des gaines après utilisation et ainsi garantir le bon confinement du combustible nucléaire et des produits de fission.
Dans ce but, des méthodes expérimentales originales seront mises en œuvre et des simulations numériques de pointe seront utilisées. Des irradiations aux ions seront réalisées afin de reproduire le dommage d’irradiation. Des traitements thermiques seront réalisés sur les échantillons après irradiation. Des échantillons seront ensuite tractionnés in situ, après recuit, dans un microscope électronique en transmission, à température ambiante ou en température. Les mécanismes observés à l’échelle nanométrique et en temps réel seront finalement simulés par dynamique des dislocations, aux mêmes échelles de temps et d’espace. Des simulations de dynamique des dislocations à très grande échelle seront également menée afin de déterminer le comportement monocristallin du matériau. En parallèle de cette étude à l’échelle nanométrique, une étude sera également menée à une échelle micrométrique. Des essais de nano-indentation et de compression de micro-piliers seront réalisés afin d’accéder au comportement mécanique après irradiation et recuit. Les résultats d’essais mécaniques seront confrontés aux simulations numériques grande échelle de dynamique des dislocations.
Cette étude permettra de mieux comprendre le comportement mécanique des alliages de zirconium après irradiation et recuit et ainsi de proposer des modèles de comportement prédictifs, basés sur les mécanismes physiques. A terme, ce travail contribuera à l’amélioration de la sureté lors du transport et de l’entreposage des assemblages combustibles usés.

Modélisation numérique de la déchirure ductile sur de longues distances en vue de quantifier les marges des méthodes d’ingénierie

La prédiction des modes de ruine des structures métalliques est une étape essentielle de l’analyse de fonctionnement des composants industriels où des éléments mécaniques sont soumis à des sollicitations importantes (par exemple composants des centrales nucléaires, pipelines, éléments structurels d’aéronefs …). Pour procéder à de telles analyses, il est essentiel de simuler correctement le comportement d’un défaut en régime ductile, c’est-à-dire en présence d’importantes déformations plastiques avant et durant la propagation.
La simulation numérique prédictive de la déchirure ductile est encore une problématique scientifique et technique ouverte malgré des progrès importants réalisés ces dernières années. L’approche dite locale de la rupture, notamment le modèle de Gurson (et sa version modifiée GTN), est largement utilisée pour modéliser la déchirure ductile.Mais son utilisation présente des limites : temps de calcul importants, arrêt de simulation suite à la présence d‘éléments complétement endommagés dans le modèle et non-convergence du résultat lorsqu’on diminue la taille des mailles.
Cette thèse a pour but de faire évoluer le modèle de simulation de déchirure ductile utilisé au LISN, pour l'appliquer aux grandes propagations de fissures sur structures complexes. Et de comparer les résultats obtenus avec les méthodes d'ingénieries qui sont plus simples à mettre en œuvre.

Effet de la radiolyse de l’eau sur le flux d’absorption d’hydrogène par les aciers inoxydables austénitiques en réacteur nucléaire à eau pressurisée

Dans les réacteurs nucléaires à eau pressurisée, les éléments constitutifs du cœur sont exposés à la fois phénomènes de corrosion en milieu primaire, de l’eau pressurisée sous 150 bar et 300 °C environ, et à un flux neutronique. Les aciers inoxydables du cœur subissent des dommages dus à la combinaison du bombardement neutronique et de la corrosion. De plus, la radiolyse de l’eau peut impacter les mécanismes et cinétiques de corrosion, la réactivité du milieu et a priori les mécanismes et cinétique d’absorption d’hydrogène par ces matériaux. Ce dernier point, encore inexploré, peut s’avérer problématique car l’hydrogène en solution solide dans l’acier peut conduire à la modification (et la dégradation) des propriétés mécaniques de l’acier ou induire une fissuration prématurée de la pièce. Les travaux pionniers développés dans cette thèse très expérimentale seront centrés autour de l’impact des phénomènes de radiolyse sur les mécanismes et cinétiques de corrosion et surtout de prise d’hydrogène d’un acier inoxydable 316L exposé au milieu primaire sous irradiation. L’hydrogène sera tracé par le deutérium, l’irradiation neutronique simulée par irradiation électronique sur accélérateurs de particules. Une cellule de perméation existante sera reconfigurée en un dispositif unique pour permettre de mesurer in operando par spectrométrie de masse le flux de perméation de deutérium à travers un échantillon exposé au milieu primaire simulé en conditions de radiolyse. La distribution de l’hydrogène dans le matériau, ainsi que la nature des couches d’oxydes formées, seront analysées finement à l’aide des techniques de pointe disponibles au CEA et dans les laboratoires partenaires. Le(a) doctorant(e) devra in fine (i) identifier les mécanismes en jeu (corrosion et entrée d’hydrogène), (ii) en estimer les cinétiques et (iii) modéliser l’évolution du flux d’hydrogène dans l’acier fonction de l’activité de la radiolyse.

Cinétiques de ségrégation et précipitation dans les alliages ferritiques sous irradiation : couplage des effets magnétiques, chimiques et élastiques

Les aciers ferritiques sont envisagés comme matériaux de structure dans les futurs réacteurs nucléaires à fission et à fusion. Or ces alliages ont des propriétés tout à fait originales, liées aux couplages entre les interactions chimiques, magnétiques et élastiques qui affectent à la fois leurs propriétés thermodynamiques, la diffusion des espèces chimiques et celle des défauts ponctuels du cristal. Le but de la thèse sera de modéliser à l’échelle atomique l’ensemble de ces effets et de les intégrer dans des simulations Monte Carlo pour modéliser les cinétiques de ségrégation et de précipitation sous irradiation, phénomènes qui peuvent dégrader leurs propriétés d’usage. L’approche atomique est indispensable pour ces matériaux soumis à une irradiation permanente, pour lesquelles les lois de la thermodynamique d’équilibre ne s’appliquent plus.

La candidate ou le candidat recherché(e) devra avoir une bonne formation en physique statistique ou en sciences des matériaux, et être attiré(e) par les simulations numériques et la programmation informatique. La thèse se déroulera au laboratoire de métallurgie physique du CEA Saclay (SRMP) dans un environnement de recherche bénéficiant d’une expérience reconnue en modélisation multi-échelles des matériaux, avec une quinzaine de thèses et de contrats post-doctoraux en cours sur ces thématiques.

Un stage de Master 2 sur le même sujet est proposé pour au printemps 2025 et est vivement recommandé.

Matériaux d'électrode avancées par ALD pour les composants ioniques

L’objectif principal des travaux de thèse est de développer des couches conductrices par la technique ALD (Atomic Layer Deposition) à très faible épaisseur (<10nm) avec des fonctionnalités d’électrodes (très faible résistivité 100). L’autre challenge vise à réduire l’épaisseur des couches à moins de 5nm tout en préservant les propriétés électriques très avancées (résistivité de quelques mOhm). Le travail de thèse comporte plusieurs aspects incluant le procédé et les précurseurs ALD, la caractérisation des couches intrinsèques (physico-chimiques, électrochimique et morphologique) ainsi que l’intégration en dispositif 3D.

Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique

Au-delà de 40 GWd/tU, la périphérie des pastilles développe une microstructure spécifique appelée High Burnup Structure (HBS), caractérisée par la subdivision des grains initiaux en grains très fins d’environ 0,2 µm. À plus fort burnup, des sous-grains apparaissent également au centre, où la température est plus élevée. Ces transformations résultent de l’action combinée des dommages produits par les produits de fission, dont les pertes d’énergie varient entre contributions électroniques et nucléaires. Les pertes électroniques peuvent générer des traces et des réarrangements de dislocations, tandis que les pertes nucléaires créent des défauts interstitiels et lacunaires tels que boucles de dislocations ou bulles. L’effet couplé de ces mécanismes entraîne notamment un grossissement plus rapide des boucles et une diminution du dommage mesuré en spectroscopie Raman, dépendant possiblement de l’orientation cristalline.

Pour mieux comprendre ces phénomènes, des irradiations par faisceaux d’ions sur matériaux modèles, UO2 monocristallin, seront réalisées afin de déterminer le rôle de l’orientation cristalline. Les plateformes JANNuS-Saclay et MOSAIC permettront des irradiations en simple ou double faisceau afin d’étudier séparément et conjointement les pertes d’énergie nucléaire et électronique. Les échantillons seront caractérisés par RBS, NRA en mode canalisé, spectroscopie Raman (in situ et ex situ), ainsi que ponctuellement par microscopie électronique en collaboration avec le CEA Cadarache. Des expériences sur synchrotron pourront compléter l’étude pour analyser l’évolution des contraintes.

Développement d’outil de modélisation pour la corrosion en milieu poreux

Dans un contexte où la durabilité des matériaux s’avère fondamentale pour la sécurité des
installations et la promotion d’une transition énergétique durable, la maîtrise des phénomènes
de corrosion constitue un enjeu majeur pour des secteurs clés tels que le transport d’énergie
décarbonée via des conduites enterrées et le génie civil (hydrogène, nucléaire, infrastructures
souterraines). Le projet CORPORE s’inscrit dans cette problématique en proposant de
développer des modèles avancés de simulation numérique pour étudier la corrosion en milieu
poreux à l’aide de COMSOL Multiphysics. L’objectif scientifique et technologique principal consiste à élaborer une modélisation multiphysique intégrée des mécanismes électrochimiques et de transport au sein de matériaux
poreux : étude de l’influence couplée de la chimie, des propriétés du réseau poreux et des
interactions matériau-environnement sur l’initiation et la propagation de la corrosion. Cette
démarche permettra d’optimiser les stratégies de protection anticorrosion, de réduire les coûts
de maintenance et d’accroître la durée de vie des structures. Sur le plan de l’état de l’art, la
plupart des modèles se focalisent aujourd’hui sur des milieux homogènes et des approches compartimentées. Notre projet se démarque par l’intégration d’une modélisation mécanistique multi-échelles alliée à l’exploitation de données archéologiques pour une validation sur le long terme.

Propriétés chimiques et mécaniques des aluminosilicates N-A-S-H de géopolymère

Le conditionnement des déchets nucléaires de faible et moyenne activité repose principalement sur les ciments, mais leurs limites face à certains déchets (métaux réactifs, huile) imposent d’explorer de nouveaux matériaux plus performants. Les géopolymères, et en particulier ceux constitués d’aluminosilicates de sodium hydratés (système Na2O–Al2O3–SiO2–H2O, noté N–A–S–H) apparaissent comme une alternative prometteuse grâce à leur compatibilité chimique avec certains types de déchets.
Cependant, malgré l’intérêt croissant pour les géopolymères, des verrous scientifiques subsistent : 1/ les données thermodynamiques disponibles sur les N-A-S-H sont encore parcellaires, rendant difficile la prédiction, via la modélisation, de leur stabilité à long terme, 2/ le rôle de leur structure atomique dans leur réactivité reste incompris, 3/ les liens entre composition chimique (rapport Si/Al) et propriétés mécaniques ne sont pas établis, ce qui limite la représentativité des modèles créés.
En combinant expérimentation et modélisation pour relier structure atomique et propriétés, cette thèse a pour but d’obtenir des données inédites et robustes sur les propriétés chimiques et mécaniques des N-A-S-H. Elle s’articule autour de trois objectifs majeurs: 1/ déterminer l’impact de la composition des N-A-S-H sur leur dissolution et établir des constantes thermodynamiques de solubilité, 2/ caractériser leur structure atomique (aluminols, silanols, environnements hydratés) par spectroscopie RMN avancée, 3/ relier leurs propriétés mécaniques, mesurées par nano-indentation, à leur structure et à leur composition, en s’appuyant sur la modélisation par dynamique moléculaire.

Top