CORTEX: Orchestration de Conteneurs pour les applications Temps-Réel, Embarqués/edge, à criticité miXte
Cette proposition de thèse de doctorat vise à développer un schéma d'orchestration de conteneurs pour les applications en temps réel, déployées sur un continuum de ressources de calcul hétérogènes dans l'espace embarqué-edge-cloud, avec un focus particulier sur les applications nécessitant des garanties en temps réel.
Les applications, allant des véhicules autonomes, à la surveillance de l'environnement ou à l'automatisation industrielle, exigent traditionnellement une grande prédictibilité avec des garanties en temps réel, mais elles demandent de plus en plus de flexibilité à l'exécution ainsi qu'une minimisation de leur empreinte environnementale globale.
Pour ces applications, une stratégie adaptative innovante est nécessaire pour optimiser dynamiquement (à l'exécution) le déploiement des charges logicielles sur les nœuds matériels, avec un objectif mixte-critique combinant des garanties en temps réel et la minimisation de l'empreinte environnementale.
Interconnexions 3D pour le design et la fabrication de processeurs quantiques
Pour améliorer les performances des ordinateurs quantiques, l'intégration tridimensionnelle (3D) est désormais essentielle. Grâce à des technologies telles que le flip-chip, le routage multi-niveaux ou même des vias traversants (TSV), l'intégration 3D offre des solutions pour augmenter le nombre de qubits sur un processeur, réduire les pertes de signaux et le cross-talk, et même améliorer la gestion thermique. Tous ces aspects sont essentiels pour continuer la mise à l'échelle des qubits.
Notre équipe développe des technologies d'interconnexion 3D (par exemple, des microbumps supraconducteurs et des TSV) pour la prochaine génération de processeurs quantiques. Cette thèse se concentrera sur la caractérisation électrique et radiofréquence de ces interconnexions et des dispositifs quantiques intégrés à proximité afin d'étudier l'impact de ces briques technologiques 3D sur les propriétés quantiques des systèmes formés.
Cette thèse se situe à la frontière entre les défis matériaux, technologiques et physiques des systèmes quantiques. Vous travaillerez avec les équipes du CEA-LETI et du CEA-IRIG. En tant que doctorant, vous participerez à la conception et au layout des véhicules de tests ainsi qu'à leur fabrication. Vous mènerez également les mesures à basse température des échantillons fabriqués, effectuerez les analyses associées et rédigerez des rapports.
Amélioration de la compréhension de l'origine du bruit dans les dispositifs quantiques
Grâce à de solides collaborations entre les équipes de plusieurs instituts de recherche et les infrastructures de salle blanche du CEA-LETI, Grenoble a été un pionnier dans le développement de dispositifs à qubits de spin en tant que plateforme pour l’informatique quantique. La durée de vie de ces qubits de spin est très sensible aux fluctuations de leur environnement électrique, connues sous le nom de bruit de charge. Ce bruit de charge dans les dispositifs à qubits de spin provient potentiellement d’événements de piégeage/dépiégeage au sein des matériaux amorphes et défectueux (par exemple, SiO2, Si3N4). Ce sujet de doctorat vise à mieux comprendre l’origine de ce bruit par des simulations numériques et à orienter le développement de dispositifs quantiques vers des niveaux de bruit plus faibles et des qubits de meilleure qualité.
L’objectif de ce sujet est d’améliorer la compréhension du bruit dans les dispositifs à qubits de spin grâce à des simulations multi-échelles allant de l’échelle atomistique à celle du dispositif. Le doctorant utilisera les codes développés au CEA pour la modélisation numérique des qubits de spin et exploitera les capacités de calcul intensif pour réaliser les simulations. En fonction du profil et des intérêts du candidat, un travail de développement de code pourra être envisagé. Le travail impliquera également des collaborations avec des expérimentateurs afin de valider les méthodes de simulation et d’aider à l’interprétation des résultats expérimentaux.
Développement de sources de photons multiplexées pour les technologies quantiques
Les technologies de l’information quantique offrent de nombreuses promesses notamment dans le domaine du calcul et des communications sécurisées. Les qubits photoniques, du fait de leur excellente robustesse à la décohérence sont particulièrement intéressants pour les communications quantiques, y compris à température ambiante. Ils offrent également une alternative à d’autres technologies de qubits dans le cadre du calcul quantique. Afin de déployer à grande échelle ces applications, il est nécessaire de disposer de dispositifs compacts, bon marché, en grand nombre. La photonique sur silicium est une plate-forme attractive pour parvenir à cet objectif, en implémentant différents composants clé de génération, manipulation et détection de qubits photoniques. Sur silicium, la génération de qubits photoniques repose sur la génération de paires de photons par effet non-linéaire dans le silicium, présentant différents attraits tels que le fonctionnement à température ambiante, la possibilité d’utiliser la paire de photons comme source de photons uniques annoncés, et la possibilité de générer des photons indiscernables à partir de deux sources spatialement distinctes.
L’objectif de cette thèse est de travailler au développement, au suivi de fabrication et à la caractérisation en laboratoire de sources de paires de photons multiplexées sur puce silicium afin de surpasser les limites inhérentes au processus physique de génération de paires de photons. Dans l’objectif d’une intégration complète sur une puce unique, il sera également essentiel de pouvoir filtrer efficacement la lumière indésirable, afin de ne garder que les photons d’intérêt. C’est pourquoi un accent particulier sera également mis sur le développement de filtres intégrés à très fort taux de réjection.
Réseaux neuronaux liquides à base d’oscillateurs verrouillés par injection pour une intelligence embarquée générative
Les architectures neuromorphiques actuelles, bien que plus efficaces grâce au in-memory computing, restent limitées par la densité extrême en poids et interconnexions, rendant leur implémentation matérielle complexe et coûteuse. Les Liquid Neural Networks (LNN), introduits par le MIT au niveau algorithmique, offrent une rupture : des neurones dynamiques à temps continu capables d’ajuster leurs constantes internes selon le signal reçu, réduisant drastiquement le nombre de paramètres nécessaires.
L’objectif de la thèse est de transposer les algorithmes des LNN au niveau circuit, en développant des cellules analogiques très faible consommation à base d’oscillateurs, réalisant le calcul neuronal dans le domaine temporel et reproduisant la dynamique liquide, puis en les interconnectant dans une architecture stable et récurrente afin de viser des applications d’IA générative. Un démonstrateur silicium sera conçu et validé, ouvrant la voie à une nouvelle génération de systèmes neuromorphiques liquides pour l’Edge AI.
Technologies de surface pour augmenter le temps de cohérence des Qubits supraconducteurs
Les défauts des matériaux dans les circuits quantiques supraconducteurs, en particulier les défauts de type systèmes à deux niveaux (TLS), sont une source majeure de décohérence, limitant ainsi les performances des qubits. Par conséquent, identifier l'origine microscopique des défauts TLS potentiels et développer des stratégies pour les éliminer est essentiel pour améliorer les performances des qubits supraconducteurs. Ce projet propose une approche originale qui combine la passivation de la surface du supraconducteur avec des films déposés par dépôt de couches atomiques (ALD), qui possèdent intrinsèquement des densités de défauts TLS plus faibles, ainsi que des traitements thermiques conçus pour dissoudre les oxydes natifs présents initialement. Ces couches de passivation seront testées sur des résonateurs 3D en Nb, puis implémentées dans des résonateurs 2D et des qubits afin de mesurer leur temps de cohérence. Le projet effectuera également des études systématiques des matériaux en utilisant des techniques de caractérisation complémentaires pour corréler les améliorations des performances des qubits avec les modifications chimiques et cristallines de la surface.