Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma
L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse
élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse
par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown
Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur
stoechiométrie.
Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier
l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être
développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de
tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de
structure complexe), d'identifier et de quantifier automatiquement les éléments présents.
En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la
densité de nanoparticules, la distribution de taille ou de forme.
Imagerie de contraste de phase différentiel à base de capteur d'image quad-pixel
La bioproduction de médicament est en plein essor et consiste à faire produire par des cellules les molécules d’intérêt. Pour cela, un suivit de la culture et de l’état des cellules est nécessaire. L’imagerie de phase quantitative par holographie est une méthode optique sans marquage qui a déjà démontré sa capacité à mesure la concentration et la viabilité des cellules cultivées. Toutefois l’implémentation de cette technique dans un bioréacteur se confronte à plusieurs difficultés liées à la forte concentration des cellules. Il est donc nécessaire de développer de nouvelles méthodes d’imagerie de phase quantitative comme l’imagerie par contraste de phase différentiel. L’objectif de la thèse est de développer cette technique avec l’utilisation d’un capteur d’image particulier dont un prototype a été réalisé au CEA-LETI. Le doctorant utilisera ce nouveau capteur et développera les algorithmes de reconstruction et de traitement d’images. Il identifiera également les points limitant du prototype actuel et définira les spécifications d’un second prototype qui sera réalisé au CEA-LETI. Enfin il se projettera dans la réalisation d’une sonde in-line, plongée dans le bioréacteur.
Etude de l’endommagement du combustible en conditions d’Accident par Insertion de Réactivité par chauffage laser: relation avec le relâchement des gaz de fission
Le chauffage par laser de haute-puissance est une technique expérimentale développée au sein du Département d’Etude du Combustible qui permet d’induire des transitoires thermiques sur des échantillons de céramiques nucléaires. Elle permet notamment de reproduire, à l’échelle du laboratoire, les conditions thermomécaniques représentatives d’une séquence incidentelle ou accidentelle, afin d’étudier des mécanismes de bases comme la fracturation ou fragmentation du combustible.
En effet, lors de certaines situations comme un transitoire thermique de type Accident par Insertion de Réactivité (RIA), la fragmentation (ou la sur-fragmentation) du combustible peut entraîner un relâchement des gaz de fission et, in fine, conduire à la rupture de la gaine du crayon combustible.
Ce type de transitoire est notamment caractérisé par une évolution spatio-temporelle complexe de la température au sein du combustible qui est difficilement reproductible à l’échelle du laboratoire. A ce jour, seules les techniques de chauffage par laser de haute-puissance permettent de reproduire les cinétiques de montées en température atteintes lors de ce type de transitoire et de reproduire les conditions thermo-mécaniques d’un RIA à l’échelle d’un échantillon manipulable en laboratoire.
Dans ce contexte, le sujet de thèse vise à fournir des données expérimentales relatives à la fragmentation et sur-fragmentation du combustible en conditions d’Accident par Insertion de Réactivité. Pour ce faire, l’étudiant devra améliorer et développer le banc expérimental existant et réaliser des expériences visant à reproduire les conditions thermo-mécaniques menant à la fragmentation du combustible. Une approche couplée expérimentation/modélisation sera nécessaire pour prédimensionner et interpréter au mieux les expériences. Les données obtenues permettront de valider les modèles de fragmentation développés au CEA et devront aussi permettre une projection de l’intégration de ces techniques expérimentales en cellule blindée.
La thèse sera menée dans un cadre collaboratif (CHAIRE MATLASE) entre le LAMIR (Laboratoire d’Analyse de la MIgration des Radioéléments) au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) du CEA Cadarache et l’équipe ILM (Interaction Laser Matière) de l’Institut Fresnel de Marseille. Cette dernière apportera son expertise dans le domaine des interactions laser de forte puissance / matériaux et de l’instrumentation optique pour le développement du système et des diagnostics optiques complexes.
Ce cadre permettra au doctorant d’évoluer dans un environnement scientifique stimulant et lui permettra de valoriser ses travaux de recherche, en France comme à l’étranger lors de conférences et de publications dans des revues à comités de lecture.
[1]M. Reymond, J. Sercombe, L. Gallais, T. Doualle, and Y. Pontillon, ‘Thermo-mechanical simulations of laser heating experiments on UO2’, Journal of Nuclear Materials, vol. 557, 2021, doi: 10.1016/J.JNUCMAT.2021.153220.
[2]M. Reymond et al., ‘High power laser heating of nuclear ceramics for the generation of controlled spatiotemporal gradients’, J Appl Phys, vol. 134, no. 3, p. 33101, Jul. 2023, doi: 10.1063/5.0146541.
[3]Hugo Fuentes et al., ‘Numerical and experimental simulation of nuclear fuel fragmentation via laser heating of ceramics’, TopFuel 2024. Accessed: Oct. 02, 2025. [Online]. Available: https://www.researchgate.net/publication/386167297_Numerical and experimental simulation of nuclear fuel via laser heating of ceramics
Mesure optique intradermique via des microaiguilles instrumentées
Le cortisol, joue un rôle central dans la régulation du cycle circadien et dans de nombreux processus physiologiques essentiels tels que le métabolisme énergétique et la réponse immunitaire. La surveillance conventionnelle du cortisol repose sur des prélèvements sanguins ou salivaires ponctuels, qui ne reflètent pas fidèlement la dynamique temporelle de sa sécrétion. Il devient donc nécessaire de développer des approches innovantes permettant une mesure continue, peu invasive et fiable de la concentration de cortisol chez les patients.
Le projet doctoral vise à développer une instrumentation originale optique couplée à des microaiguilles fonctionnalisées avec des aptamères fluorescents pour le suivi de cortisol intradermique, de manière continue, minimalement invasive et sans prélèvement. Dans ce cadre, le doctorant aura pour mission de concevoir et de dimensionner les futures microaiguilles optiques destinées à la détection du cortisol. De mettre en place des dispositifs expérimentaux nécessaires à la caractérisation des microaiguilles optiques fabriquées au sein du département et de tester les performances des microaiguilles dans un environnement représentatif. Enfin, le doctorant développera une méthodologie complète de traitement et d’analyse des données afin d’identifier les paramètres clés permettant d’établir un lien quantitatif entre les signaux collectés et la concentration en cortisol. L’ensemble de ces travaux contribuera à la mise au point d’un dispositif de mesure innovant basé sur les technologies de rupture d’émission et de détection optiques disponibles au CEA-LETI, combinant précision, sensibilité, compacité et donc compatibilité avec une utilisation in vivo.