De la physique Few-Body aux collisions d'antinoyaux

Sachant que les rares antinoyaux présents dans l'espace pourraient contenir des informations sur des mécanismes de production exotiques (e.g. annihilation ou désintégration de la matière noire), leur étude est devenue un domaine à fort impact, reliant physique nucléaire, astroparticule et mesures (accélérateurs). Cependant, l'interprétation des recherches actuelles et futures sur les antinoyaux est limitée par le manque de données nucléaires : les processus de diffusion à basse énergie, d'annihilation et de désintégration des antinoyaux sur la matière ordinaire sont difficiles à mesurer directement. Cela motive une stratégie fondée sur la théorie. Notre projet adopte une approche "bottom-up" : description ab initio des systèmes nucléaires et des collisions d'antimatière les plus simples à basse énergie, identification des mécanismes sous-jacents d'annihilation à plusieurs corps, puis propagation de ces contraintes à la modélisation des interactions à l'échelle du noyau et à des énergies plus élevées. Nous visons à la fois à approfondir notre compréhension des interactions matière-antimatière au niveau nucléaire et à fournir des données validées pour les outils de simulation utilisés en astroparticules et pour les accélérateurs.
Transfert entre les deux champs : nous simplifions le problème pour le ramener au cas le plus simple pouvant être traité par la méthode ab initio, car dans INCL (Intra NuclearCascade of Liège), l'annihilation de l'antideuton est identifiée comme une annihilation avec un quasi-deuton dans un noyau cible. Deux questions clés doivent être abordées en partie à l'aide de calculs ab initio : 1. Quel quasi-deutéron interagira ? 2. Quel canal de sortie en résultera ?

Modélisation de la distribution du redshift des galaxies lentillées d'Euclid pour des analyses au niveau du champ

La mission Euclid fournira des données sur les lentilles gravitationnelles faibles avec une précision sans précédent, ce qui pourrait révolutionner notre compréhension de l'énergie noire et de la croissance des structures cosmiques. Pour en extraire toute la richesse informative, il faut aller au-delà des analyses standard. Afin d'exploiter au mieux ces données, le projet OCAPi analysera les cartes de lentille gravitationnelle d'Euclid directement au niveau des pixels. Cette approche, connue sous le nom d'inférence au niveau du champ, permet de capturer toutes les informations et d'obtenir des contraintes jusqu'à 5 fois plus précises sur les paramètres cosmologiques (Porqueres et al. 2022, 2023).

Cette précision accrue nécessite toutefois une modélisation précise des données. L'un des principaux défis de l'étalonnage dans les relevés de lentilles gravitationnelles faibles est la distribution des galaxies lentillées en fonction du redshift. Les méthodes d'étalonnage actuelles ont été conçues pour les analyses standard et peuvent ne pas être suffisamment précises pour les techniques au niveau du champ. Il est essentiel de quantifier les exigences de précision et de développer des méthodes capables de les atteindre afin de permettre l'analyse au niveau du champ des données d'Euclid et de libérer tout le potentiel scientifique.

L'objectif de ce projet de doctorat est de développer un nouvel échantillonneur de redshifts pour la lentille gravitationnelle faible, conçu pour répondre aux exigences de précision de l'inférence au niveau du champ. Cet échantillonneur combinera des modèles physiques de populations de galaxies avec des techniques d'apprentissage automatique flexibles. La thèse contribuera à maximiser le potentiel des données de lentille gravitationnelle faible d'Euclid et à faire progresser notre compréhension de la formation des structures cosmiques.

Modélisation gyrocinétique de l'interaction non linéaire entre les instabilités induites par les particules énergétiques et la microturbulence dans les plasmas de tokamak

Les plasmas de tokamak sont des systèmes fortement non linéaires et hors équilibre thermodynamique, dans lesquels coexistent des instabilités de tailles très différentes, allant des grandes oscillations macroscopiques à la microturbulence. La présence d’ions énergétiques produits par les réactions de fusion ou par le chauffage auxiliaire renforce ces instabilités via des résonances ondes-particules. La microturbulence est responsable du transport de chaleur et de particules du plasma thermique, tandis que les instabilités induites par les particules énergétiques peuvent produire leur transport radial et, donc, leurs pertes. Ces deux phénomènes dégradent les performances des plasmas de tokamaks actuels et potentiellement aussi celles des plasmas en combustion comme dans ITER.
Des résultats récents montrent cependant que ces instabilités, longtemps étudiées séparément, peuvent interagir non-linéairement et conduire in fine à une amélioration inattendue du confinement du plasma.
L’objectif du projet est d’étudier ces interactions multi-échelles à l’aide du code gyrocinétique GTC, capable de simuler simultanément turbulence et instabilités de particules énergétiques. Ce travail vise à mieux comprendre les mécanismes non linéaires gouvernant le confinement et à identifier des régimes optimaux pour les futurs plasmas de fusion.

Impact des paramètres d’irradiation sur la formation de la phase alpha’ dans les aciers renforcés par dispersion d’oxydes (ODS)

Les aciers ferritiques-martensitiques renforcés par dispersion d'oxydes (aciers ODS) sont des matériaux d’intérêt pour la filière nucléaire. Composés majoritairement de fer et de chrome, ces matériaux peuvent être fragilisés par la précipitation sous irradiation d’une phase riche en chrome, la phase alpha prime. Cette phase, réputée sensible aux conditions d’irradiation, en fait un sujet idéal pour mieux comprendre les limites de la transférabilité ions-neutrons. En effet, si les irradiations aux ions sont fréquemment utilisées pour comprendre les phénomènes observés sous irradiation neutronique, la question de leur représentativité est régulièrement soulevée.
Dans cette thèse, nous cherchons donc à comprendre dans quelle mesure les paramètres des irradiations impactent les caractéristiques de la phase alpha’ dans les aciers ODS. Pour cela, des aciers ODS seront irradiés dans différentes conditions (flux, dose, température type de particules (ions, neutrons, électrons)) puis analysés à l’échelle nanométrique. Les caractéristiques des nano-oxydes (taille, densité) et de la phase alpha’ (taille, teneur en Cr), obtenues pour chacune des conditions d’irradiation, seront comparées à celles d’un échantillon de MA957 après irradiation aux neutrons.

Applications des faisceaux d'électrons relativistes produits par le laser PETAL

Cette thèse s’inscrit dans le domaine de la physique des plasmas produits par des lasers de très haute puissance et de haute intensité. Elle sera menée au sein de l’installation LMJ, en lien avec le laser PETAL capable d’atteindre des intensités supérieures à 10¹8 W·cm?² et de générer des particules de haute énergie.
L’objectif principal est d’étudier la production et l’accélération de faisceaux d’électrons relativistes dans un jet de gaz. Les applications de ces faisceaux seront évaluées pour la génération de paires électron-positron et pour la radiographie par faisceaux d’électrons.
Le travail reposera sur une approche combinant expériences et modélisation numérique. Le doctorant participera à des campagnes expérimentales prévues en 2026–2027, incluant la mise en œuvre de diagnostics et l’analyse des données. En parallèle, des simulations numériques de type Particle-In-Cell (CALDER) et Monte-Carlo (GEANT4) seront réalisées afin d’interpréter les résultats expérimentaux.
Dans une seconde phase, la thèse contribuera à la qualification de l’évolution du laser PETAL, notamment l’étude des sources secondaires (électrons, protons et rayonnement X dur) issues de l’interaction laser-matière, en lien avec le projet PETAL-UPGRADE.

Préconditionnement de schémas itératifs pour la résolution en éléments finis mixte d’un problème aux valeurs propres appliquée à la neutronique.

La neutronique est l’étude du cheminement des neutrons dans la matière et des réactions qu’ils y induisent, en particulier la génération de puissance par la fission de noyaux lourds. La modélisation du flux de neutrons stationnaire dans un cœur de réacteur repose sur la résolution d’un problème aux valeurs propres généralisé de la forme :
Trouver (phi, keff) tel que A phi=1/keff B phi et keff est la valeur propre de plus grand module, où A est la matrice de disparition supposée inversible, B représente la matrice de production, phi désigne le flux de neutrons et keff est appelé le facteur de multiplication.

L’outil de calcul neutronique APOLLO3® est un projet commun du CEA, Framatome et EDF pour le développement d’un code de nouvelle génération pour la physique de cœurs de réacteurs pour à la fois des besoins de R&D et des applications industrielles [4].
Le solveur MINOS [2] est développé dans le cadre du projet APOLLO3®. Ce solveur est basé sur la discrétisation en éléments finis mixtes du modèle de diffusion neutronique ou du modèle de transport simplifié. La stratégie de résolution du problème aux valeurs propres généralisé ci-dessus est itérative ; elle consiste à appliquer l’algorithme de la puissance inverse [6].

La vitesse de convergence de cet algorithme de la puissance inverse dépend du gap spectral. Dans le cadre des cœurs de grande taille tels que le réacteur EPR, on observe que le gap spectral est proche de 1, ce qui dégrade la convergence l’algorithme de la puissance inverse. Il est nécessaire d’appliquer des techniques d’accélération de manière à réduire le nombre d’itérations [7]. Dans le cadre du transport neutronique, le préconditionnement appelé Diffusion Synthetic Acceleration est très populaire pour l’itération dite « interne » [1] mais également récemment appliqué à l’itération dite « externe » [3]. Une variante de cette méthode a été introduite dans [5] pour la résolution d’un problème à source. Il y est montré théoriquement la convergence de cette variante dans tous les régimes.

L’objectif de la thèse est de contribuer à l’accélération du schéma itératif existant dans le solveur MINOS. Il s’agira de construire une approche de préconditionnement adaptée au solveur MINOS.

[1] M. L. Adams, E. W. Larsen, Fast iterative methods for discrete-ordinates particle transport calculations, Progress in Nuclear Energy, Volume 40, Issue 1, 2002.

[2] A.-M. Baudron and J.-J. Lautard. MINOS: a simplified PN solver for core calculation. Nuclear Science and Engineering, volume 155(2), pp. 250–263 (2007).

[3] A. Calloo, R. Le Tellier, D. Couyras, Anderson acceleration and linear diffusion for accelerating the k-eigenvalue problem for the transport equation, Annals of Nuclear Energy, Volume 180, 2023.

[4] P. Mosca, L. Bourhrara, A. Calloo, A. Gammicchia, F. Goubioud, L. Mao, F. Madiot, F. Malouch, E. Masiello, F. Moreau, S. Santandrea, D. Sciannandrone, I. Zmijarevic, E. Y. Garcia-Cervantes, G. Valocchi, J. F. Vidal, F. Damian, P. Laurent, A. Willien, A. Brighenti, L. Graziano, and B. Vezzoni. APOLLO3®: Overview of the New Code Capabilities for Reactor Physics Analysis. Nuclear Science and Engineering, 2024.

[5] O. Palii, M. Schlottbom, On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer, Computers & Mathematics with Applications, Volume 79, Issue 12, 2020.

[6] Y. Saad. Numerical methods for large eigenvalue problems: revised edition. Society for Industrial and Applied Mathematics, 2011.

[7] J. Willert, H. Park, and D. A. Knoll. A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem. Journal of Computational Physics, 2014, vol. 274, p. 681-694.

Etude de la désexcitation radiative du noyau avec une méthode de type Oslo

La capture d’un neutron par un noyau amène à un noyau composé prompt à se désexciter principalement en émettant des gammas si l’énergie d’excitation est inférieure au MeV. Ce processus est appelé capture radiative. Cette réaction, bien connue, dont on sait précisément mesurer la section efficace aux basses énergies pour des noyaux de ou proche de la vallée de stabilité, reste difficilement mesurable pour des noyaux plus exotiques.Les modèles de réactions nucléaires basés essentiellement sur les noyaux stables peinent,eux aussi, à apporter des prédictions fiables de ces sections efficaces sur ces noyaux exotiques. Cependant, ces dernières années,des avancées dans la modélisation et dans les mesures autour de cette réaction a permis d’entrevoir des voies d’améliorations significatives en s’intéressant aux ingrédients plus microscopiques, qui restent accessibles à des mesures plus fines: la fonction de force gamma et la densité de niveaux. En effet, ces ingrédients qui gèrent respectivement la manière dont la cascade gamma se déroule et la structure du noyau à haute énergie d’excitation peuvent être mesurés pour aider ensuite à les calculer plus finement. Ces améliorations ont un impact direct sur la prédiction des sections efficaces pour des noyaux instables que l’on trouve dans la nucléosynthèse stellaire. Le sujet de cette thèse est de mesurer ces ingrédients pour un noyau formé dans la nucléosynthèse en utilisant un nouveau dispositif appelé SFyNCS.

Étude de l’écoulement elliptique des hadrons charmés dans les collisions ions lourds avec LHCb?

Le projet FLOALESCENCE s’inscrit dans le cadre de l’étude expérimentale de la matière de QCD et de la transition de phase entre plasma de quarks et de gluons (QGP) et matière hadronique.?Ce plasma, formé quelques microsecondes après le Big Bang, peut être recréé aujourd’hui dans les collisions plomb-plomb ultra-relativistes au Grand collisionneur de hadrons (LHC).
L’objectif du projet est de comprendre comment les quarks charmés se hadronisent lorsque le QGP se refroidit. Le doctorant travaillera au sein de l’expérience LHCb, un détecteur unique par sa couverture en rapidité avant, permettant d’explorer une région de l’espace des phases encore inexplorée.
Le travail consistera à mesurer pour la première fois à LHCb l’écoulement elliptique (v2) des baryons charmés (?c+) et des mésons (D0), afin de tester les modèles de coalescence et de caractériser le degré de thermalisation des quarks charmés dans le milieu QGP.

Objectifs et missions:
- Extraire et analyser les signaux ?c+ et D0 dans les nouvelles données Pb–Pb enregistrées par LHCb (2024–2025).
- Développer et appliquer une méthode d’analyse innovante de l’écoulement elliptique, fondée sur la reformulation de la méthode des Zéros de Lee–Yang.
- Mettre en place une métrique de multiplicité d’événement pour relier les observables de flux à la densité d’énergie du système.
- Comparer les résultats aux prédictions théoriques et aux mesures des autres expériences du LHC (ALICE, CMS).
Rédiger des publications scientifiques et présenter les résultats lors de conférences internationales.

Le/la doctorant.e acquerra :
- Une maîtrise avancée des outils d’analyse de données du LHCb (ROOT, Python, C++), y compris les techniques de classification par apprentissage automatique.
- Une expertise en physique des hautes énergies et en QCD, notamment sur les propriétés du plasma de quarks et de gluons et les phénomènes collectifs.
- Des compétences en analyse statistique et traitement de grands volumes de données.
- Une solide expérience du travail collaboratif international (au sein de la collaboration LHCb).
- Une formation polyvalente valorisable tant dans la recherche académique que dans les domaines de la data science, de l’ingénierie ou de la modélisation physique.

Développement d'un estimateur hybride CPU-GPU pour le transport neutronique : vers une simulation Monte Carlo plus efficace

Des jumeaux numériques intégrant des modèles de simulation Monte Carlo sont en développement pour la conception, l’exploitation et le démantèlement d’installations nucléaires. Ces jumeaux sont capables de prédire des grandeurs physiques telles que les flux de particules, les échauffements gamma/neutrons ou les débits d’équivalent de dose. Cependant, la méthode Monte Carlo présente un inconvénient majeur : un temps de calcul élevé pour obtenir une variance acceptable. Pour améliorer l’efficacité des simulations, l’estimateur eTLE a été développé et intégré au code Monte Carlo TRIPOLI-4®. Comparé à l’estimateur classique TLE (Track Length Estimator), l’eTLE offre une variance théorique plus faible, notamment dans les milieux fortement absorbants, en apportant des contributions au détecteur sans que la particule ne l’atteigne. Cependant, son coût computationnel reste encore élevé, surtout lorsqu’on souhaite évaluer plusieurs détecteurs.
Dans deux thèses récentes, deux variantes ont été développées pour surmonter cette limite. Le Forced Detection eTLE- (Guadagni, EPJ Plus 2021) utilise un échantillonnage préférentiel qui oriente les pseudo-particules vers le détecteur à chaque collision. Il est particulièrement efficace pour les petits détecteurs et les configurations avec blindages modérés, notamment pour les neutrons rapides. Le Split Exponential TLE (Hutinet & Antonsanti, EPJ Web 2024) repose sur une approche GPU asynchrone, externalisant le transport en ligne droite des particules sur processeur graphique. Grâce à un échantillonnage multiple, il maximise l’usage du GPU et permet une exploration plus efficace de l’espace des phases.
La thèse proposée vise à combiner ces deux approches dans un estimateur hybride nommé seTLE-DF. Ce nouvel estimateur pourra être utilisé soit directement, soit pour générer des cartes d’importance sans recourir à des calculs auxiliaires avec des codes déterministes. Sa mise en œuvre nécessitera des développements spécifiques sur GPU, notamment pour optimiser la bibliothèque géométrique et la gestion mémoire dans des géométries complexes.
Ce sujet s’inscrit dans le cadre de l’informatique verte, visant à réduire l’empreinte carbone du calcul haute-performance. Il repose sur une approche hybride CPU-GPU, évitant le portage complet du code Monte Carlo sur GPU. Des solutions telles que l’utilisation du format demi-précision seront envisagées et une évaluation de l’impact énergétique avant et après implémentation sera réalisée. Le futur docteur sera accueilli au sein de l'Institut IRESNE (CEA Cadarache). Il pourra acquérir des compétences solides en simulation neutronique, facilitant son intégration dans les grands organismes de recherche ou les entreprises du secteur nucléaire.

Sonder l’information quantique avec le quark top au LHC

Ce projet de doctorat vise à explorer la nature quantique de la production de paires de quarks top au LHC, en étudiant les corrélations de spin et les observables liées à l’intrication quantique dans les données enregistrées par l’expérience ATLAS. Les récentes avancées ayant permis d’observer l’intrication dans les événements top–antitop ont ouvert une nouvelle fenêtre sur l'étude de la structure quantique des interactions fondamentales, faisant du LHC une machine capable de sonder l’information quantique à l’échelle du TeV. La thèse se concentrera sur la reconstruction de l’état quantique des paires de quarks top à partir des données du Run 3 d’ATLAS, avec une attention particulière portée à l’extraction des corrélations de spin et des observables sensibles à l’intrication quantique dans des topologies à haute impulsion. En améliorant les stratégies de reconstruction et en évaluant soigneusement les effets du détecteur, l’objectif est de déterminer les propriétés quantiques de la paire de quarks top avec précision et ainsi de contribuer à comprendre ce que l’information quantique peut apporter à notre connaissance des particules élémentaires.

Top