Impact des historiques de puissance sur la chaleur résiduelle des combustibles nucléaires usés

La puissance résiduelle est l’énergie dégagée par la désintégration des radionucléides présents dans le cœur d’un réacteur à l’arrêt. Une connaissance précise de sa valeur moyenne et de sa plage de variations revêt un aspect important pour le design et la sûreté des systèmes de transport et d’entreposage du combustible. Ces informations ne pouvant être mesurées de manière exhaustive, on utilise des outils de simulation numérique pour estimer la valeur nominale de la puissance résiduelle et quantifier ses variations dues aux incertitudes sur les données nucléaires.
Dans cette thèse, on se propose de quantifier les variations de la puissance résiduelle induite par les données de fonctionnement du réacteur, notamment les historiques de puissance, soit la puissance instantanée des assemblages de combustible lors de leur séjour en cœur. Ce travail revêt un challenge particulier puisque les données d’entrée ici ne sont plus des grandeurs scalaires mais des fonctions dépendant du temps. Pour cela, un modèle de substitution de l’outil de calcul scientifique sera développé afin de réduire le temps de calcul. La modélisation globale du problème sera réalisée dans un cadre bayésien à l’aide d’approches de réduction de modèle associées à des méthodes multifidélité. L’inférence bayésienne permettra in fine de résoudre un problème inverse pour quantifier les incertitudes induites par les historiques de puissance.

Le doctorant intègrera l’équipe du Laboratoire des Projets Nucléaires de l’institut IRESNE du CEA Cadarache. Il développera des compétences en simulation neutronique, science des données et réacteurs nucléaires. Il sera amené à présenter ses travaux périodiquement et les publiera dans des revues à comité de lecture.

RECHERCHES D’EMISSION DIFFUSES EN RAYONS GAMMA DE TRES HAUTE ENERGIE ET PHYSIQUE FONDAMENTALE AVEC H.E.S.S. ET CTAO

Les observations en rayons gamma de très hautes énergies (THE, E>100 GeV) sont cruciales pour la compréhension des phénomènes non-thermiques les plus violents à l’œuvre dans l’Univers. La région centre de la Voie Lactée est une région complexe et active en rayons gamma de THE. Parmi les sources gamma de THE se trouvent le trou noir supermassif Sagittarius A* au coeur de la Galaxie, des vestiges de supernova ou encore des régions de formation d'étoiles. Le centre Galactique (CG) abrite un un accélérateur de rayons cosmiques jusqu’à des énergies du PeV, des émissions diffuses du GeV au TeV dont le « Galactic Center Excess » (GCE) dont l’origine est encore inconnue, de potentielles sources variables au TeV, ainsi que possibles populations de sources non encore résolues (pulsars millisecondes, trous noirs de masses intermédiaires). Le CG devrait être la source la plus brillante d’annihilations de
particules massives de matière noire de type WIMPs. Des candidats matière noire plus légers, les particules de type axions (ALP), pourraient se convertir en photons, et vice versa, dans les champs magnétiques laissant une empreinte d’oscillation dans les spectres gamma de noyaux actifs de galaxies (AGN).
L'observatoire H.E.S.S. situé en Namibie est composé de cinq télescopes imageurs à effet Cherenkov atmosphérique. Il est conçu pour détecter des rayons gamma de quelques dizaines de GeV à plusieurs dizaines de TeV. La région du Centre Galactique est observée par H.E.S.S. depuis vingt ans. Ces observations ont permis de détecter le premier Pevatron Galactique et de poser les contraintes les plus fortes à ce jour sur la section efficace d'annihilation de particules de matière noire dans la plage en masse du TeV. Le futur observatoire CTA sera déployé sur deux sites, l'un à La Palma et l'autre au Chili. Ce dernier composé de plus de 50 télescopes permettra d'obtenir un balayage sans précédent de la région sur Centre Galactique.
Le travail proposé portera sur l'analyse et l'interprétation des observations H.E.S.S. conduites dans la région du Centre Galactique pour la recherche d'émission diffuses (populations de sources non résolues, matière noire massive) ainsi que des observations menées vers un sélection de noyaux actifs de galaxie pour la recherche d'ALPs constituant la matière noire. Ces nouveaux cadres d'analyses seront implémentés pour les analyses CTA à venir. Une implication dans la prise de données H.E.S.S. est attendue.

Calcul des sensibilités en neutronique déterministe : développement des méthodologies pour l'étape réseau.

En neutronique, les calculs déterministes reposent généralement sur une approche en deux étapes, appelées étapes réseau et étape cœur. Dans la première, les sections efficaces multi-groupes sont réduites (condensées sur quelques groupes d'énergie et homogénéisées sur des régions de la taille d'un assemblage) en utilisant un petit sous-ensemble du modèle géométrique du système (typiquement, un seul sous-assemblage représentatif d'un modèle répété) afin de réduire la dimensionnalité de l'étape du calcul cœur. Lorsque ces ensembles réduits de sections efficaces sont utilisés pour les analyses de sensibilité du calcul cœur, l'impact de l'étape réseau est généralement négligé. Pour certaines quantités d'intérêt, cela peut conduire à des écarts importants entre les sensibilités calculées et les sensibilités réelles, étant donné que les calculs de transport sur réseau sont essentiels pour véhiculer les informations sur le spectre neutronique local à énergie fine et les effets d'autoprotection des résonances. Il peut y avoir un problème supplémentaire lorsque ces calculs de sensibilité sont utilisés pour fournir un retour d'information sur les évaluations des données nucléaires, ou dans le cas d'études de similitude. Pour résoudre ce problème, plusieurs approches sont disponibles, telles que les calculs directs ou les études de théorie des perturbations, chacune représentant des compromis différents en termes de coût ou de complexité.
L’objectif de cette thèse est par conséquent d’explorer l’état de l’art du domaine, à partir depuis les approches basées sur la force brute jusqu’à celles utilisant la théorie des perturbations avec la possibilité d’en proposer des nouvelles. L’implémentation des méthodes retenu dans des codes de nouvelle génération (comme APOLLO3) permettra enfin d’améliorer la précision des études de sensibilité.
Le doctorant sera basé dans l’unité de recherche en physique des réacteurs du CEA/IRESNE à Cadarache, qui accueille de nombreux étudiants et stagiaires. Les perspectives post-diplôme incluent la recherche dans les laboratoires de R&D nucléaire et dans l'industrie.

Etude systématique des réactions de diffusion des neutrons sur les matériaux de structure d'intérêt pour les applications électronucléaires

Les réactions de diffusion élastique et inélastique sur les matériaux de structure ont un impact non négligeable sur la simulation du transport des neutrons dans ces matériaux. Les données nucléaires des matériaux de structure d’intérêt pour les réacteurs nucléaires et les études de criticité doivent être connues avec une bonne précision sur un large domaine en énergie du neutron incident, allant de quelques dizaines de meV à plusieurs MeV. Or, la méconnaissance de ces réactions empêche d’atteindre la précision souhaitée. Cette proposition de thèse vise à mener une étude systématique des réactions de diffusion au-delà du domaine des résonances résolues jusqu’à 5 MeV, domaine dans lequel ni le formalisme de la Matrice-R ni le modèle statistique Hauser-Feshbach ne sont applicables pour les matériaux de structure. L’absence de modèle nucléaire utilisable nécessite la mise en place d’un nouveau formalisme alimenté par des mesures à haute résolution des distributions angulaires associées aux réactions de diffusion. Ce travail portera plus précisément sur des mesures déjà réalisées (sodium [1], fer [2]) et sera étendu à d’autres éléments étudiés dans le cadre du projet international INDEN de l’AIEA, tels que le cuivre, chrome et nickel. Pour cela, La base de données expérimentales disponible sera complétée dans le cadre de cette thèse par de nouvelles mesures sur les isotopes du cuivre (Cu63 et Cu65). Les mesures seront réalisées au JRC Geel avec le multi-détecteur ELISA. Concernant le cuivre, les benchmarks intégraux de la base de criticité ICSBEP ont révélés plusieurs lacunes dans les bibliothèques JEFF de données nucléaires évaluées qui questionnent indirectement la connaissance des données nucléaires de l’U235. Par exemple, les benchmarks ZEUS, utilisés pour étudier la section efficace de capture de l’U235 dans le domaine en énergie des neutrons rapides, sont très sensibles aux données nucléaires du réflecteur en cuivre. Ce type de benchmark permettra de quantifier l’impact du nouveau formalisme d’évaluation des données nucléaires des matériaux de structure.

Cette étude permettra au candidat d'acquérir des compétences en physique nucléaire expérimentale et théorique, ainsi qu’en physique neutronique. Les résultats obtenus seront valorisés auprès du groupe de travail JEFF de L'Agence pour l'Energie Nucléaire (OCDE/AEN).

[1] P. Archier, Contribution à l’amélioration des données nucléaires neutroniques du sodium pour le calcul des réacteurs de génération IV, Thèse, Université de Grenoble, 2011.
[2] G. Gkatis, Study of neutron induced reaction cross sections on Fe isotopes at the GELINA facility relevant to reactor applications, Thèse, Université Aix-Marseille, 2024.

Modélisation de la polarisation de charges nucléaires des fragments de fission pour l’évaluation des rendements de fission : applications aux noyaux d’intérêt pour le cycle du combustible

La thématique des données nucléaires est centrale pour les applications de l’énergie nucléaire, constituant le pont entre les propriétés « microscopiques » des noyaux et les valeurs clés « macroscopiques » utiles aux calculs de physique des réacteurs et du cycle. Le Laboratoire d’études de Physique de l’institut IRESNE du CEA Cadarache est engagé dans l’évaluation de ces données nucléaires dans le cadre d’un programme développé au sein du groupe JEFF (animé par l’Agence de l’Energie Nucléaire) et d’un Coordinated Research Project de l’AIEA. Le développement récent d’une nouvelle méthodologie d’évaluation des rendements de fission (taux de production des produits de fission après l’émission des neutrons prompts) induite par neutrons thermiques a permis d’améliorer les précisions des évaluations proposées pour la bibliothèque JEFF-4.0 en fournissant leur matrice de covariances. Pour étendre les évaluations de rendements de fission induites par neutrons thermiques au spectre des neutrons rapides, il est nécessaire de développer un couplage des outils d’évaluation actuels avec des modèles de rendements de fission avant émission des neutrons prompts. Ce couplage est indispensable pour extrapoler les études déjà réalisées sur la fission thermique de l’235U et du 239Pu aux noyaux moins connus expérimentalement (241Pu, 241Am, 245Cm) ou étudier la dépendance de ces rendements avec l’énergie cinétique des neutrons incidents. Une des composantes essentielles manquantes est la description de la distribution en charge nucléaire (Z) en fonction de la masse des fragments de fission et de l’énergie du neutron incident. Ces distributions sont caractérisées par un paramètre clé : la polarisation de charge. Cette polarisation traduit un excès (respectivement défaut) de proton dans le pic des fragments légers (respectivement lourds) par rapport à la densité de charges moyenne du noyau fissionnant. Si cette quantité a été mesurée pour la réaction 235U(nth,f), elle est lacunaire pour d’autres énergies de neutrons ou d’autres systèmes fissionnants. Les perspectives de ce sujet portent autant sur l’impact de ces nouvelles évaluations sur les grandeurs-clés pour les applications électronucléaires qu’à la validation des mécanismes de fission décrit par les modèles microscopiques de fission.

Simulations multiphysiques avec estimation d’incertitudes appliquées aux réacteurs rapides refroidis au sodium

La modélisation multiphysique est essentielle pour l'analyse des réacteurs nucléaires, mais la propagation des incertitudes entre différents domaines physiques (comme les comportements thermiques, mécaniques et neutroniques) est souvent négligée en raison de sa complexité. Ce projet de thèse vise à relever ce défi en développant des méthodes innovantes pour intégrer la quantification des incertitudes dans les modèles multiphysiques.

L'objectif principal est de proposer des approches de modélisation optimales, adaptées à différents niveaux de précision. Le projet explorera des techniques avancées, telles que la modélisation d'ordre réduit et l'expansion du chaos polynomial, pour identifier et classer les paramètres d'entrée ayant l'impact le plus significatif sur les sorties du système, indépendamment de leur domaine physique. Une comparaison entre des modèles « haute fidélité », développés à l'aide des outils de simulation de référence du CEA, et des modèles « best-estimate » conçus pour un usage industriel sera réalisée. Cette analyse comparative mettra en lumière comment les erreurs se propagent dans les différentes approches de simulation.

Les modèles seront validés à l'aide de données expérimentales de SEFOR, un réacteur rapide refroidi au sodium. Ces expériences fournissent des repères précieux pour tester les modèles multiphysiques dans des conditions réalistes de réacteur. Ce projet répond directement au besoin croissant de l'industrie nucléaire pour des outils de modélisation fiables et efficaces, visant à améliorer la sécurité et la performance des réacteurs.

Le candidat évoluera dans un environnement dynamique au CEA, avec accès à des ressources de simulation avancées et des opportunités de collaboration avec d'autres chercheurs et doctorants. Le projet offre également la possibilité de présenter les résultats lors de conférences nationales et internationales, avec des perspectives de carrière solides dans la conception de réacteurs nucléaires, l'analyse de la sûreté et la simulation avancée.

Modèles microscopiques de structure nucléaire pour étudier le processus de désexcitation dans la fission nucléaire

Le code FIFRELIN est développé au CEA/IRESNE Cadarache afin de fournir une description détaillée du processus de fission et de calculer avec précision toutes les observables de fission pertinentes. Le code repose en grande partie sur la connaissance détaillée de la structure sous-jacente des noyaux impliqués dans le processus de désexcitation post-fission. Dans la mesure du possible, le code s'appuie sur des bases de données de structures nucléaires telles que RIPL-3, qui fournissent des informations précieuses sur les schémas de niveaux nucléaires, les rapports de branchement et d'autres propriétés nucléaires essentielles. Malheureusement, toutes ces quantités n'ont pas été mesurées, des modèles nucléaires sont donc utilisés.

Le développement de modèles nucléaires avancés est la tâche du groupe de théorie nucléaire nouvellement formé à Cadarache, dont l'expertise principale est l'implémentation de solveurs du problème nucléaire à A corps basés sur des interactions nucléon-nucléon effectives.

Le but de cette thèse est de quantifier l'impact de la fonction de force E1/M1 et E2/M2 sur les observables de fission. Actuellement, cette quantité est principalement estimée à l'aide de modèles simples tels que la Lorentzienne généralisée. Le doctorant devra remplacer ces modèles par des théories entièrement microscopiques basées sur l'interaction effective entre les nucléons via les techniques de type QRPA. Une étude préliminaire a démontré que l'utilisation de modèles macroscopiques (Lorentzienne généralisé) ou microscopiques (QRPA) a un impact non négligeable sur les observables de fission.

Les débouchés de la thèse incluent la recherche académique et les labos de R&D nucléaire théorique et appliquée.

Mesure intégrale de sections efficaces de capture de produits de fission par la combinaison de techniques d’oscillation et d’activation

Cette thèse s’inscrit dans le cadre du projet POSEIDON (Fission Product Oscillation Experiments for Improving Depletion Calculations), qui porte sur la mesure intégrale des sections efficaces de capture et de diffusion neutroniques des principaux produits de fission contributeurs à la perte de réactivité dans les combustibles irradiés. Il consiste en la mesure, au moyen d’un dispositif d’oscillation en réacteur, de l’effet en réactivité d’échantillons d’isotopes séparés, couplée à la mesure par activation neutronique, dans trois configurations spectrales de cœur : thermique, REP et épithermique.

Une partie de la thèse se déroulera au CEA IRESNE à Cadarache et une partie au Centre de Recherche de la République Tchèque CV Rez. L’étudiante/étudiant participera aux tests et à l’optimisation du dispositif d’oscillation actuellement en cours de fabrication, ainsi qu’à la réalisation des mesures au sein du réacteur expérimental tchèque LR0. La partie de la thèse qui aura lieu à Cadarache portera sur l’analyse des données obtenues. Cette analyse sera réalisée avec des outils de simulation Monte-Carlo. Certaines fonctionnalités nécessaires à l’exploitation des données nécessiteront un développement spécifique au sein des codes par l’étudiante/étudiant.

Une retombée attendue de ces travaux est une meilleure prédiction de la perte de réactivité des cœurs de réacteur en fonction du burn-up. Actuellement, même avec les bibliothèques de données nucléaires internationales les plus récentes, un biais important existe dans l’estimation de cette perte de réactivité.

L’étudiante/étudiant développera des compétences en physique neutronique expérimentale et théorique. Les débouchés incluent les laboratoires de R&D et l’industrie nucléaire.

ÉTUDE DE LA VARIABILITE MULTI-ECHELLES DU CIEL GAMMA A TRES HAUTE ENERGIE

L'astronomie gamma de très haute énergie observe le ciel au-dessus de quelques dizaines de GeV. Ce domaine émergent de l’astronomie est en plein essor depuis le début des années 1990, en particulier, depuis la mise en service en 2004 du réseau de télescopes H.E.S.S. en Namibie. L'IRFU/CEA-Paris Saclay est un membre particulièrement actif de cette collaboration depuis ses débuts. Il est également impliqué dans la préparation du futur observatoire CTAO (Cherenkov Telescope Array Observatory) qui est actuellement en phase d’installation. La détection des photons gamma d'énergie supérieure à quelques dizaines de GeV permet d'étudier les processus d’accélération des particules chargées au sein d’objets aussi variés que les vestiges de supernova ou les noyaux actifs de galaxies. Par ce biais, H.E.S.S. vise notamment à répondre à la question centenaire de l'origine des rayons cosmiques.
H.E.S.S. permet de mesurer la direction, l'énergie et le temps d'arrivée de chaque photon détecté. La mesure du temps a permis de mettre en évidence des sources dont le flux présente des variations temporelles importantes ou encore périodiques. L'étude de ces émissions variables (transitoires ou périodiques), que ce soit en direction du Centre Galactique ou de noyaux actifs de galaxies (AGN) lointains permet de mieux comprendre les processus d'émissions à l'œuvre au sein de ces sources, de caractériser le milieu dans lequel les photons se propagent mais également de tester la validité de certaines lois physiques fondamentales comme l’invariance de Lorentz. La large gamme d'échelles temporelles qu'il est possible de sonder permet de rechercher et d'étudier des sursauts ou des variations dans le flux des sources allant de quelques secondes (sursaut gamma, trous noirs primordiaux) à quelques années (systèmes binaires de haute masse, noyaux actifs de galaxie).
L'un des succès majeurs des deux décennies de prise de données de H.E.S.S. a été de conduire à des relevés des ciels galactique et extragalactique aux très-hautes énergies. Ces relevés combinent des observations dédiées à certaines sources,
comme le Centre Galactique ou certains vestiges de supernovæ, mais aussi des observations à l’aveugle pour la découverte de nouvelles sources. Le sujet de thèse proposé ici porte sur un aspect de l’étude des sources qui reste à explorer : la recherche et l'étude de la variabilité des sources de très hautes énergies. Pour les sources variables, il est également intéressant de corréler la variabilité dans d’autres domaines de longueurs d’onde. Finalement le modèle de la source peut aider à prédire son comportement, par exemple ses « états hauts » ou ses sursauts.

Compréhension et contrôle des régimes de divertor dissipatifs dans les expériences sur le tokamak WEST

Le succès du programme de fusion par confinement magnétique repose sur la maitrise de l’interaction entre le plasma confiné et chaud, où les réactions de fusion prennent place, et le mur de l’enceinte à vide dans lequel ce plasma est maintenu. Actuellement, cette interaction est gérée par un dispositif matériel et magnétique nommé le divertor, qui vise à concentrer les flux perdus du plasma à travers un volume dédié (le volume divertor) vers des composants à hauts flux (composants de surface du divertor). Le contrôle des phénomènes dissipatifs dans ce volume divertor est un objectif critique qui doit permettre de maintenir de hautes performances de confinement dans le cœur (plasma chaud) tout en maintenant les flux sur les composants en-dessous des limites technologiques. Le tokamak WEST, actuellement opéré au CEA Cadarache, a pour objectif principal la maitrise de cette interaction, en appui étroit avec le projet ITER. Le projet de thèse vise à améliorer la compréhension physique des expériences de contrôle débutées sur WEST, à travers une analyse expérimentale avancée, à l’optimisation d’un modèle de contrôle robuste et générique qui pourra être déployé sur WEST pour conduire des scénarios représentatifs des conditions d’ITER. Le projet s’inscrira aussi dans un contexte international très actif sur le sujet, à la fois en Europe (Activités EUROfusion), en Asie et aux Etats-Unis, offrant un grand spectre de visibilité et de possibilités de collaborations et d’évolutions. Les résultats seront publiés dans des revues à comité de relecture avec possiblement de forts facteurs d’impact, et pourront être présentés à des conférences internationales.

Top