RECHERCHES D’EMISSION DIFFUSES EN RAYONS GAMMA DE TRES HAUTE ENERGIE ET PHYSIQUE FONDAMENTALE AVEC H.E.S.S. ET CTAO

Les observations en rayons gamma de très hautes énergies (THE, E>100 GeV) sont cruciales pour la compréhension des phénomènes non-thermiques les plus violents à l’œuvre dans l’Univers. La région centre de la Voie Lactée est une région complexe et active en rayons gamma de THE. Parmi les sources gamma de THE se trouvent le trou noir supermassif Sagittarius A* au coeur de la Galaxie, des vestiges de supernova ou encore des régions de formation d'étoiles. Le centre Galactique (CG) abrite un un accélérateur de rayons cosmiques jusqu’à des énergies du PeV, des émissions diffuses du GeV au TeV dont le « Galactic Center Excess » (GCE) dont l’origine est encore inconnue, de potentielles sources variables au TeV, ainsi que possibles populations de sources non encore résolues (pulsars millisecondes, trous noirs de masses intermédiaires). Le CG devrait être la source la plus brillante d’annihilations de
particules massives de matière noire de type WIMPs. Des candidats matière noire plus légers, les particules de type axions (ALP), pourraient se convertir en photons, et vice versa, dans les champs magnétiques laissant une empreinte d’oscillation dans les spectres gamma de noyaux actifs de galaxies (AGN).
L'observatoire H.E.S.S. situé en Namibie est composé de cinq télescopes imageurs à effet Cherenkov atmosphérique. Il est conçu pour détecter des rayons gamma de quelques dizaines de GeV à plusieurs dizaines de TeV. La région du Centre Galactique est observée par H.E.S.S. depuis vingt ans. Ces observations ont permis de détecter le premier Pevatron Galactique et de poser les contraintes les plus fortes à ce jour sur la section efficace d'annihilation de particules de matière noire dans la plage en masse du TeV. Le futur observatoire CTA sera déployé sur deux sites, l'un à La Palma et l'autre au Chili. Ce dernier composé de plus de 50 télescopes permettra d'obtenir un balayage sans précédent de la région sur Centre Galactique.
Le travail proposé portera sur l'analyse et l'interprétation des observations H.E.S.S. conduites dans la région du Centre Galactique pour la recherche d'émission diffuses (populations de sources non résolues, matière noire massive) ainsi que des observations menées vers un sélection de noyaux actifs de galaxie pour la recherche d'ALPs constituant la matière noire. Ces nouveaux cadres d'analyses seront implémentés pour les analyses CTA à venir. Une implication dans la prise de données H.E.S.S. est attendue.

ÉTUDE DE LA VARIABILITE MULTI-ECHELLES DU CIEL GAMMA A TRES HAUTE ENERGIE

L'astronomie gamma de très haute énergie observe le ciel au-dessus de quelques dizaines de GeV. Ce domaine émergent de l’astronomie est en plein essor depuis le début des années 1990, en particulier, depuis la mise en service en 2004 du réseau de télescopes H.E.S.S. en Namibie. L'IRFU/CEA-Paris Saclay est un membre particulièrement actif de cette collaboration depuis ses débuts. Il est également impliqué dans la préparation du futur observatoire CTAO (Cherenkov Telescope Array Observatory) qui est actuellement en phase d’installation. La détection des photons gamma d'énergie supérieure à quelques dizaines de GeV permet d'étudier les processus d’accélération des particules chargées au sein d’objets aussi variés que les vestiges de supernova ou les noyaux actifs de galaxies. Par ce biais, H.E.S.S. vise notamment à répondre à la question centenaire de l'origine des rayons cosmiques.
H.E.S.S. permet de mesurer la direction, l'énergie et le temps d'arrivée de chaque photon détecté. La mesure du temps a permis de mettre en évidence des sources dont le flux présente des variations temporelles importantes ou encore périodiques. L'étude de ces émissions variables (transitoires ou périodiques), que ce soit en direction du Centre Galactique ou de noyaux actifs de galaxies (AGN) lointains permet de mieux comprendre les processus d'émissions à l'œuvre au sein de ces sources, de caractériser le milieu dans lequel les photons se propagent mais également de tester la validité de certaines lois physiques fondamentales comme l’invariance de Lorentz. La large gamme d'échelles temporelles qu'il est possible de sonder permet de rechercher et d'étudier des sursauts ou des variations dans le flux des sources allant de quelques secondes (sursaut gamma, trous noirs primordiaux) à quelques années (systèmes binaires de haute masse, noyaux actifs de galaxie).
L'un des succès majeurs des deux décennies de prise de données de H.E.S.S. a été de conduire à des relevés des ciels galactique et extragalactique aux très-hautes énergies. Ces relevés combinent des observations dédiées à certaines sources,
comme le Centre Galactique ou certains vestiges de supernovæ, mais aussi des observations à l’aveugle pour la découverte de nouvelles sources. Le sujet de thèse proposé ici porte sur un aspect de l’étude des sources qui reste à explorer : la recherche et l'étude de la variabilité des sources de très hautes énergies. Pour les sources variables, il est également intéressant de corréler la variabilité dans d’autres domaines de longueurs d’onde. Finalement le modèle de la source peut aider à prédire son comportement, par exemple ses « états hauts » ou ses sursauts.

Réactions nucléaires induites par des anti-ions légers – apport du modèle INCL

L’interaction d’une antiparticule avec un noyau atomique est un type de réaction qu’il faut savoir simuler pour pouvoir répondre à des questions fondamentales. On peut citer comme exemples, la collaboration PANDA (FAIR) avec des faisceaux d’antiproton de l’ordre du GeV qui envisage l’étude des interactions nucléon-hypéron, ainsi que celle de la peau de neutron, par la production d’hypérons et d’antihypérons. Cette même peau de neutron est aussi étudiée avec des antiprotons au repos avec l’expérience PUMA (AD - Cern). Au même endroit nous collaborons avec l’expérience ASACUSA pour l’étude de la production des particules chargées. Pour répondre à ces études, notre code de réactions nucléaires INCL a été étendu aux antiprotons (thèse D. Zharenov soutenue fin 2023). Au-delà de l’antiproton il y a les antideutérons et antiHe-3. Ces antiparticules sont d’un intérêt plus récent, avec notamment l'expérience GAPS (General AntiParticle Spectrometer) qui vise à mesurer les flux de ces particules dans le rayonnement cosmique. L’idée est de mettre en évidence la matière noire, dont ces particules seraient des produits de décroissance, et dont la quantité mesurée doit ressortir plus facilement du bruit de fond astrophysique que dans le cas des antiprotons. Le sujet proposé est donc l’implantation des anti-noyaux légers dans INCL avec comparaisons à des données expérimentales.

Chimie de déséquilibre des atmosphères d'exoplanètes à haute métallicité à l'époque du JWST

En un peu plus de deux ans d'exploitation scientifique, le JWST a révolutionné notre compréhension des exoplanètes et de leurs atmosphères. La mission spatiale ARIEL, qui sera lancée en 2029, contribuera bientôt à cette révolution. L'une des principales découvertes rendues possibles par la qualité exceptionnelle des données du JWST est que les atmosphères des exoplanètes sont en déséquilibre chimique. Un traitement complet du déséquilibre est complexe, en particulier lorsque les atmosphères sont riches en métaux, c'est-à-dire lorsqu'elles contiennent en abondance significative des éléments autres que l'hydrogène et l'hélium. Dans un premier temps, notre projet étudiera numériquement l'étendue du déséquilibre chimique dans les atmosphères des cibles du JWST suspectées d'avoir des atmosphères riches en métaux. Nous utiliserons à cette fin un modèle photochimique interne. Dans un deuxième temps, notre projet explorera l'effet de la chimie super-thermique comme moteur du déséquilibre chimique. Cela permettra d'obtenir des informations inédites sur la chimie des atmosphères riches en métaux, avec le potentiel de jeter un nouvel éclairage sur les trajectoires chimiques et évolutives des exoplanètes de faible masse.

Etude des sursauts gamma cosmiques détectes par la mission SVOM

Les sursauts gamma cosmiques (GRBs) sont des bref (0.1-100 s) éclairs de photons gamma qui apparaissent de façon imprévisible sur toute la voûte céleste. Bien que découverts à la fin des années 1960, ils sont restés mystérieux jusqu'à la fin des années 1990 à cause de leur nature furtive. Ce n'est que grâce aux observations du satellite BepppSAX à la fin des années 1990 et surtout à celles du satellite Swift à partir des années 2000, que le mystère de la nature de ces sources à pu être percé.
En fait il s'agit d'émissions liées d'une part aux phases finales d'une étoile très massive (30-50 fois la masse su Soleil) pour les sursaut longs (>2 s) et de l'autre à la coalescence de deux objets compacts (typiquement deux étoiles à neutrons) pour les sursauts courts (< 2s). Dans tous les cas il y a création d'un jet de matière relativiste qui est à l'origine de l'émission gamma et dans les autres bandes d'énergie. Si ce puissant jet est pointé vers la terre on peut observer les sursauts gamma jusqu'à des distances très élevées (z~9.1) ce qui correspond à un age très jeune de notre Univers (~500 Myr).
SVOM est une mission satellitaire franco-chinoise dédiée à l'etude des sursauts gamma, qui a été lancée avec succès le 22 juin 2024 et dans laquelle le CEA/Irfu/DAp est fortement impliqué. Le sujet de thèse se propose d'exploiter les données multi-longueur d'onde de la charge utile de SVOM et des télescopes partenaires pour mieux étudier la nature des sursauts gamma et en particulier d'utiliser les données du telescope à rayons X MXT, pour mieux contraindre la nature de l'objet compact qui est la source des jets relativistes, qui sont à l'origine des émissions observées.

Développement d'algorithmes de reconstruction pour les nouvelles chambres de projection temporelle à grand angle dans l'expérience T2K et mesure de la violation de CP dans les oscillations de neutrinos

Les neutrinos sont des messagers prometteurs pour détecter de la physique au-delà du Modèle Standard. Leur nature mystérieuse et leur masse encore inexpliquée suggèrent qu'ils pourraient révéler de nouvelles voies pour la physique. Les recherches sur les oscillations de neutrinos sont entrées dans une phase de précision avec des expériences comme T2K, qui, en 2020, a observé des indices de violation de CP dans le secteur leptonique, susceptibles d’apporter des réponses à la question de l’asymétrie matière-antimatière dans l’Univers.

L'expérience T2K, qui se déroule au Japon, mesure les oscillations de neutrinos en produisant un faisceau intense de neutrinos (et antineutrinos) muoniques. Ce faisceau est analysé à deux emplacements : un détecteur proche, conçu pour contraindre les incertitudes systématiques associées au flux de neutrinos et aux modèles d'interaction, et un détecteur lointain (Super-Kamiokande), qui permet de mesurer la disparition des neutrinos muoniques ainsi que l'apparition des neutrinos électroniques à la suite des oscillations.
En 2023, T2K a entamé sa seconde phase avec une puissance de faisceau accrue et des améliorations du détecteur proche ND280, incluant une nouvelle cible hautement segmentée et des chambres à projection temporelle à grands angles (HA-TPC). Ces améliorations permettent une reconstruction plus précise des particules produites par les interactions de neutrinos.

Les équipes de l'IRFU ont contribué en développant des HA-TPC équipées de la technologie Micromegas résistive. Ces travaux améliorent la résolution spatiale et la précision du moment des particules. La thèse explore l'optimisation des algorithmes de reconstruction des trajectoires des particules dans les HA-TPC grâce à des techniques avancées, ainsi que l'analyse des données T2K avec le ND280 amélioré afin d'atteindre un niveau de significance de 3 sigma sur la violation de CP. T2K prépare ainsi le terrain pour les expériences futures comme DUNE et Hyper-Kamiokande, ouvrant de nouvelles perspectives pour les deux prochaines décennies.

L'aube de la formation planétaire

La formation des planètes est un sujet phare de l’astrophysique avec des implications sur des questions existentielles comme l’origine de la vie dans l’Univers. De manière surprenante, nous ne savons pas précisément quand les planètes se forment au sein des disques protoplanétaires. De récentes observations semblent indiquer que ce processus pourrait se produire tôt dans l’évolution de ces disques. Mais les conditions qui règnent dans les disques jeunes sont encore méconnues. Au cours de cette thèse, nous proposons d’étudier l’hypothèse d’une formation rapide des planètes. Nous effectuerons des simulations 3D de formation des disques, incluant l’évolution du gaz, de la poussière ainsi que des mécanismes permettant de convertir les poussières en planétésimaux lorsque les conditions seront adéquates. En plus de déterminer si les planètes se forment rapidement ou non, nous pourrons étudier l’architecture des systèmes planétaires formés et la comparer aux systèmes d’exoplanètes observés. Ce travail, à la pointe de nos connaissances actuelles, s’inscrit dans de nombreux efforts de la communauté pour mieux comprendre les exoplanètes ainsi que nos origines.

Calibration des nouvelles chambres à projection temporelle à grand angle de l'expérience T2K et mesure de la violation de CP dans les oscillations des neutrinos

Le projet de thèse proposé s’inscrit dans l’étude des oscillations des neutrinos, un phénomène quantique clé pour explorer la Nouvelle Physique au-delà du Modèle Standard. Ces oscillations, comparées entre neutrinos et antineutrinos, pourraient apporter des éclaircissements sur l'une des questions les plus fondamentales de la physique des particules : l'origine de l'asymétrie matière-antimatière dans l'Univers.

L’expérience T2K, située au Japon, étudie ces oscillations en générant un faisceau intense de neutrinos (et antineutrinos) muoniques. Ce faisceau est mesuré à deux endroits : un détecteur proche, utilisé pour réduire les incertitudes systématiques liées au flux de neutrinos et aux modèles d’interaction, et un détecteur lointain (Super-Kamiokande), chargé de mesurer la disparition des neutrinos muoniques et l’apparition des neutrinos électroniques après oscillations.

Le projet de thèse se divise en deux parties. La première consistera à calibrer les nouveaux détecteurs (nouvelles chambres à projection temporelle utilisant la technologie MicroMegas resistive) pour mesurer le spectre en énergie des neutrinos et à évaluer les incertitudes systématiques associées. La seconde partie portera sur l’analyse des nouvelles données collectées, permettant d’obtenir des mesures plus précises des paramètres d'oscillation, d'améliorer la compréhension des interactions neutrino-noyau, et de mesurer la violation de CP dans les oscillations des neutrinos avec une précision de 3 sigma dans le cas d’une violation maximale, comme l’indiquent les derniers résultats de T2K, et à terme 5 sigma dans la future expérience Hyper-Kamiokande, qui utilisera le même faisceau et le même détecteur proche que T2K.

Mesure du flux elliptique des quarks charmés dans les collisions Pb-Pb semi-centrales à 5 TeV au CERN avec LHCb.

Les collisions d'ions lourds offrent une opportunité unique d'étudier le plasma de quarks et de gluons (QGP), un état exotique de la matière dans lequel les quarks et les gluons ne sont plus confinés dans les hadrons, et qui aurait existé quelques microsecondes après le Big Bang. Parmi les sondes clés pour l'étude du QGP figurent les quarks charmés. En effet, ces derniers conservent l'histoire de leurs interactions avec le QGP, les rendant essentiels pour comprendre les propriétés du QGP. La production de quarks charmés et leurs interactions avec le QGP sont étudiées à travers les mesures des hadrons, mésons et baryons contenant au moins un quark ou antiquark charm, tels que les mésons D0 ou les baryons Lambda_c. Cependant, le processus d'hadronisation — la manière dont les quarks charm se confinent dans des baryons ou mésons incolores — reste encore mal compris.

Une approche prometteuse pour approfondir la compréhension de l'hadronisation des quarks charmés réside dans la mesure de leur écoulement elliptique, une mesure de corrélations angulaires à longue distance, une signature des effets collectifs dus à la thermalisation du QGP. En comparant l'écoulement elliptique des mésons D0 et des baryons Lambda_c, sensible aux propriétés du milieu créé, les chercheurs peuvent approfondir leurs connaissance sur le mécanisme d'hadronisation des quarks charmés.

Pour mesurer cet écoulement elliptique, l'étudiant.e sélectionné.e développera une méthode innovante exploitant pleinement les capacités du détecteur LHCb. Cette méthode, jamais appliquée auparavant, permet une interprétation plus intuitive et théoriquement robustes des mesures d'écoulement elliptique par rapport aux méthodes traditionnelles. Le/la candidat.e adaptera cette technique pour le détecteur LHCb afin de mesurer, comparer et interpréter l'écoulement elliptique des baryons charmés Lambda_c et des mésons D0 dans les nouvelles données PbPb collectés par LHCb en 2024.

Calcul des sensibilités en neutronique déterministe : développement des méthodologies pour l'étape réseau.

En neutronique, les calculs déterministes reposent généralement sur une approche en deux étapes, appelées étapes réseau et étape cœur. Dans la première, les sections efficaces multi-groupes sont réduites (condensées sur quelques groupes d'énergie et homogénéisées sur des régions de la taille d'un assemblage) en utilisant un petit sous-ensemble du modèle géométrique du système (typiquement, un seul sous-assemblage représentatif d'un modèle répété) afin de réduire la dimensionnalité de l'étape du calcul cœur. Lorsque ces ensembles réduits de sections efficaces sont utilisés pour les analyses de sensibilité du calcul cœur, l'impact de l'étape réseau est généralement négligé. Pour certaines quantités d'intérêt, cela peut conduire à des écarts importants entre les sensibilités calculées et les sensibilités réelles, étant donné que les calculs de transport sur réseau sont essentiels pour véhiculer les informations sur le spectre neutronique local à énergie fine et les effets d'autoprotection des résonances. Il peut y avoir un problème supplémentaire lorsque ces calculs de sensibilité sont utilisés pour fournir un retour d'information sur les évaluations des données nucléaires, ou dans le cas d'études de similitude. Pour résoudre ce problème, plusieurs approches sont disponibles, telles que les calculs directs ou les études de théorie des perturbations, chacune représentant des compromis différents en termes de coût ou de complexité.
L’objectif de cette thèse est par conséquent d’explorer l’état de l’art du domaine, à partir depuis les approches basées sur la force brute jusqu’à celles utilisant la théorie des perturbations avec la possibilité d’en proposer des nouvelles. L’implémentation des méthodes retenu dans des codes de nouvelle génération (comme APOLLO3) permettra enfin d’améliorer la précision des études de sensibilité.
Le doctorant sera basé dans l’unité de recherche en physique des réacteurs du CEA/IRESNE à Cadarache, qui accueille de nombreux étudiants et stagiaires. Les perspectives post-diplôme incluent la recherche dans les laboratoires de R&D nucléaire et dans l'industrie.

Top