Ajustement d'un modèle d’interaction nucléaire effective et propagation des erreurs statistiques

Au cœur de chaque approche « many-body » utilisée pour décrire les propriétés fondamentales d’un noyau atomique, on retrouve l’interaction effective nucléon-nucléon. Une telle interaction effective doit prendre en compte les effets du milieu nucléaire. Pour l’obtenir, il faut utiliser un protocole d’ajustement complexe qui prend en compte une variété d’observables nucléaires comme les rayons, les masses, les centroïdes des résonances géantes ou encore l’équation d’état de la matière nucléaire autour de la densité de saturation.
Un modèle d’interaction forte très utilisé est celui de Gogny, qui est formé par une combinaison linéaire des constantes de couplages et d’opérateurs avec un facteur de forme radial de type Gaussien [1]. Les constantes de couplages sont déterminées via un protocole d’ajustement sur les propriétés d’un nombre restreint de noyaux, typiquement les noyaux sphériques comme 40-48Ca, 56Ni, 120Sn et 208Pb.
L’objectif premier de cette thèse consiste à développer un protocole d’ajustement de l’interaction nucléaire qui puisse donner accès à la matrice de covariance des paramètres du modèle pour ensuite effectuer une analyse de la propagation des erreurs statistiques sur les observables nucléaires [2].
Après avoir analysé les relations entre paramètres et leurs poids relatifs sur les différentes observables, le doctorant explorera la possibilité de modifier certains termes de l’interaction comme le terme à trois corps ou les effets au-delà du champ moyen.
Le doctorant sera positionné dans une équipe de physiciens nucléaires au sein d’un laboratoire d’étude de physique de l'institut CEA IRESNE situé à Cadarache. Le travail s’effectuera en équipe avec le CEA/DIF. Les principaux débouchés professionnels sont la recherche académique et les organismes de R&D dans le domaine nucléaire.

[1] D. Davesne et al. "Infinite matter properties and zero-range limit of non-relativistic finite-range interactions." Annals of Physics 375 (2016): 288-312.
[2] T. Haverinen and M. Kortelainen. "Uncertainty propagation within the UNEDF models." Journal of Physics G: Nuclear and Particle Physics 44.4 (2017): 044008.

Modèles microscopiques de structure nucléaire pour étudier le processus de désexcitation dans la fission nucléaire

Le code FIFRELIN est développé au CEA/IRESNE Cadarache afin de fournir une description détaillée du processus de fission et de calculer avec précision toutes les observables de fission pertinentes. Le code repose en grande partie sur la connaissance détaillée de la structure sous-jacente des noyaux impliqués dans le processus de désexcitation post-fission. Dans la mesure du possible, le code s'appuie sur des bases de données de structures nucléaires telles que RIPL-3, qui fournissent des informations précieuses sur les schémas de niveaux nucléaires, les rapports de branchement et d'autres propriétés nucléaires essentielles. Malheureusement, toutes ces quantités n'ont pas été mesurées, des modèles nucléaires sont donc utilisés.

Le développement de modèles nucléaires avancés est la tâche du groupe de théorie nucléaire nouvellement formé à Cadarache, dont l'expertise principale est l'implémentation de solveurs du problème nucléaire à A corps basés sur des interactions nucléon-nucléon effectives.

Le but de cette thèse est de quantifier l'impact de la fonction de force E1/M1 et E2/M2 sur les observables de fission. Actuellement, cette quantité est principalement estimée à l'aide de modèles simples tels que la Lorentzienne généralisée. Le doctorant devra remplacer ces modèles par des théories entièrement microscopiques basées sur l'interaction effective entre les nucléons via les techniques de type QRPA. Une étude préliminaire a démontré que l'utilisation de modèles macroscopiques (Lorentzienne généralisé) ou microscopiques (QRPA) a un impact non négligeable sur les observables de fission.

Les débouchés de la thèse incluent la recherche académique et les labos de R&D nucléaire théorique et appliquée.

Mesure et évaluation de la dépendance énergétique des données de neutrons retardés du 239Pu

Cette proposition de thèse vise à mesurer et à caractériser l’émission des neutrons retardés émis par la fission du 239Pu. Cet actinide est impliqué dans divers concepts de réacteurs et la connaissance des données nucléaires qui le caractérisent reste actuellement insuffisante, en particulier en spectre rapide. Ce projet comprend une forte composante expérimentale, avec plusieurs campagnes de mesures sur l'accélérateur électrostatique MONNET au JRC Geel, auxquelles le doctorant prendra activement part.
La première étape de cette thèse consistera à intercomparer les méthodes de mesure du flux neutronique (dosimétrie, chambre à fission, détecteur long-counter et scintillateur à protons de recul) puis de les confronter à des calculs Monte-Carlo simulant l’émission des neutrons par interaction de particules chargées (D+T, D+D, p+T). Ce travail permettra d’assurer la bonne caractérisation du flux neutronique, une étape essentielle pour la suite du projet.
Dans un second temps, le doctorant devra reproduire des mesures de neutrons retardés du 238U, à l’aide d’une cible préexistante, dans une logique d’inter-comparaison par rapport à une campagne expérimentale menée en 2023.
Dans un troisième temps, le doctorant réalisera la mesure des rendements en neutrons retardés et des abondances par groupe du 239Pu, sur une gamme d’énergie de neutrons comprise entre 1 et 8 MeV. In fine, il produira une évaluation dépendante de l’énergie et l’intégrera dans un fichier ENDF pour être testée sur différents calculs de réacteur (beta-eff, transitoires de puissance, calibration d’efficacité d’absorbants…). Ces mesures complèteront une étude en spectre thermique menée à l’ILL en 2022 dans le but de former un modèle cohérent pour le 239Pu sur une gamme d’énergie de 0 à 8 MeV.
Ce projet contribuera au fichier de données nucléaires JEFF-4 de l’OCDE/AEN. Il répond à une forte demande de l’industrie nucléaire (soulignée par l’AIEA) pour améliorer la précision des mesures de multiplicité et des paramètres cinétiques des neutrons retardés, contribuant ainsi à une meilleure maîtrise de la sûreté des réacteurs nucléaires ainsi qu’à la réduction des marges de sûreté.

IA générative pour la quantification robuste des incertitudes dans les problèmes inverses en astrophysiques

Contexte
Les problèmes inverses, c'est-à-dire l'estimation des signaux sous-jacents à partir d'observations corrompues, sont omniprésents en astrophysique, et notre capacité à les résoudre avec précision est essentielle à l'interprétation scientifique des données. Parmi les exemples de ces problèmes, on peut citer l'inférence de la distribution de la matière noire dans l'Univers à partir des effets de lentille gravitationnelle [1], ou la séparation des composantes dans l'imagerie radio-interférométrique [2].

Grâce aux récents progrès de l'apprentissage profond, et en particulier aux techniques de modélisation générative profonde (par exemple les modèles de diffusion), il est désormais possible non seulement d'obtenir une estimation de la solution de ces problèmes inverses, mais aussi d'effectuer une quantification de l'incertitude en estimant la distribution de probabilité a posteriori Bayésienne du problème, c'est-à-dire en ayant accès à toutes les solutions possibles qui seraient permises par les données, mais aussi plausibles en fonction des connaissances antérieures.

Notre équipe a notamment été pionnière dans l'élaboration de méthodes bayésiennes combinant notre connaissance de la physique du problème, sous la forme d'un terme de vraisemblance explicite, avec des à prioris basées sur les données et mises en œuvre sous la forme de modèles génératifs. Cette approche contrainte par la physique garantit que les solutions restent compatibles avec les données et évite les « hallucinations » qui affectent généralement la plupart des applications génératives de l'IA.

Cependant, malgré les progrès remarquables réalisés au cours des dernières années, plusieurs défis subsistent dans le cadre évoqué ci-dessus, et plus particulièrement :

[Données à priori imparfaites ou avec une distribution décalée] La construction de données à priori nécessite généralement l'accès à des exemples de données non corrompues qui, dans de nombreux cas, n'existent pas (par exemple, toutes les images astronomiques sont observées avec du bruit et une certaine quantité de flou), ou qui peuvent exister mais dont la distribution peut être décalée par rapport aux problèmes auxquels nous voudrions appliquer ce distribution à priori.
Ce décalage peut fausser les estimations et conduire à des conclusions scientifiques erronées. Par conséquent, l'adaptation, ou l'étalonnage, des antécédents basés sur les données à partir d'observations incomplètes et bruyantes devient cruciale pour travailler avec des données réelles dans les applications astrophysiques.

[Échantillonnage efficace de distributions a posteriori à haute dimension] Même si la vraisemblance et l'à priori basé par les données sont disponibles, l'échantillonnage correct et efficace de distributions de probabilités multimodales non convexes dans des dimensions si élevées reste un problème difficile. Les méthodes les plus efficaces à ce jour reposent sur des modèles de diffusion, mais elles s'appuient sur des approximations et peuvent être coûteuses au moment de l'inférence pour obtenir des estimations précises des distributions a posteriori souhaités.

Les exigences strictes des applications scientifiques sont un moteur puissant pour l'amélioration des méthodologies, mais au-delà du contexte scientifique astrophysique qui motive cette recherche, ces outils trouvent également une large application dans de nombreux autres domaines, y compris les images médicales [3].

Projet de doctorat
Le candidat visera à répondre à ces limitations des méthodologies actuelles, avec l'objectif global de rendre la quantification de l'incertitude pour les problèmes inverses à grande échelle plus rapide et plus précise.
Comme première direction de recherche, nous étendrons une méthodologie récente développée simultanément par notre équipe et nos collaborateurs de Ciela [4,5], basée sur l'algorithme d'espérance-maximisation, afin d'apprendre itérativement (ou d'adapter) des distributions à priori basés sur des méthodes de diffusion à des données observées sous un certain degré de corruption. Cette stratégie s'est avérée efficace pour corriger les décalages de la distribution á priori (et donc pour obtenir des distributions à posteriori bien calibrés). Cependant, cette approche reste coûteuse car elle nécessite la résolution itérative de problèmes inverses et le réentraînement des modèles de diffusion, et dépend fortement de la qualité du solveur de problèmes inverses. Nous explorerons plusieurs stratégies, notamment l'inférence variationnelle et les stratégies améliorées d'échantillonnage pour des problèmes inverses, afin de résoudre ces difficultés.
Dans une deuxième direction (mais connexe), nous nous concentrerons sur le développement de méthodologies générales pour l'échantillonnage de postérieurs complexes (géométries multimodales/complexes) de problèmes inverses non linéaires. En particulier, nous étudierons des stratégies basées sur le recuit (annealing) de la distribution à posteriori, inspirées de l'échantillonnage de modèles de diffusion, applicables dans des situations avec des vraisemblances et des distributions à priori explicites.
Finalement, nous appliquerons ces méthodologies à des problèmes inverses difficiles et à fort impact en astrophysique, en particulier en collaboration avec nos collègues de l'institut Ciela, nous viserons à améliorer la reconstruction des sources et des lentilles des systèmes de lentilles gravitationnelles fortes.
Des publications dans les meilleures conférences sur l'apprentissage automatique sont attendues (NeurIPS, ICML), ainsi que des publications sur les applications de ces méthodologies dans des revues d'astrophysique.

Références
[1] Benjamin Remy, Francois Lanusse, Niall Jeffrey, Jia Liu, Jean-Luc Starck, Ken Osato, Tim Schrabback, Probabilistic Mass Mapping with Neural Score Estimation, https://www.aanda.org/articles/aa/abs/2023/04/aa43054-22/aa43054-22.html

[2] Tobías I Liaudat, Matthijs Mars, Matthew A Price, Marcelo Pereyra, Marta M Betcke, Jason D McEwen, Scalable Bayesian uncertainty quantification with data-driven priors for radio interferometric imaging, RAS Techniques and Instruments, Volume 3, Issue 1, January 2024, Pages 505–534, https://doi.org/10.1093/rasti/rzae030

[3] Zaccharie Ramzi, Benjamin Remy, Francois Lanusse, Jean-Luc Starck, Philippe Ciuciu, Denoising Score-Matching for Uncertainty Quantification in Inverse Problems, https://arxiv.org/abs/2011.08698

[4] François Rozet, Gérôme Andry, François Lanusse, Gilles Louppe, Learning Diffusion Priors from Observations by Expectation Maximization, NeurIPS 2024, https://arxiv.org/abs/2405.13712

[5] Gabriel Missael Barco, Alexandre Adam, Connor Stone, Yashar Hezaveh, Laurence Perreault-Levasseur, Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems, https://arxiv.org/abs/2407.17667

Exploration des instabilités à haute fréquence induites par les électrons rapides en vue d'une application sur WEST

Dans les tokamaks actuels, la distribution des électrons est fortement influencée par les systèmes de chauffage externes, tels que le chauffage par résonance cyclotron électronique (ECRH) ou le chauffage Lower Hybrid (LH), qui génèrent une importante population d’électrons rapides. Cela est également attendu dans les tokamaks de nouvelle génération, comme ITER, où une part substantielle de la puissance est déposée sur les électrons. Une population significative d’électrons rapides peut déstabiliser des instabilités, y compris les modes d’Alfvén (AE). Cependant, ce phénomène reste peu étudié, en particulier en ce qui concerne la population d’électrons déclenchant ces instabilités et l'impact des AE déstabilisés par les électrons sur la dynamique multi-échelle de la turbulence dans l'environnement complexe du plasma.
Ce PhD vise à explorer la physique des AE déstabilisés par les électrons dans des conditions de plasma réalistes, en appliquant ces connaissances aux expériences WEST pour une caractérisation approfondie de ces instabilités. Le candidat utilisera des codes numériques avancés, développés à l'IRFM, pour analyser les conditions de plasma réalistes avec AE déstabilisés par les électrons rapides, afin de saisir la physique essentielle en jeu. Un développement de code sera également nécessaire pour modéliser les aspects clés de cette physique. Une fois ces connaissances acquises, une modélisation prédictive pour l’environnement WEST orientera des expériences visant à observer ces instabilités.
Basé au CEA Cadarache, l’étudiant collaborera avec différentes équipes, du groupe de théorie et de modélisation à l’équipe expérimentale de WEST, et acquerra une expertise variée dans un environnement stimulant. Des collaborations avec les groupes de travail de l’EUROfusion offriront également une expérience internationale enrichissante.

Dévelopement d'algorithmes de trajectographie basés sur l'apprentissage machine pour le futur Upstream Tracker de LHCb au LHC

Cette proposition vise à développer et améliorer les futures performances de trajectographie de l'expérience LHCb au Grand collisionneur de hadrons (LHC) via l’étude de divers algorithmes basés sur l'apprentissage machine automatique. Parmi les systèmes de trajectographie de LHCb, le sous-détecteur Upstream Tracker (UT) joue un rôle crucial dans la réduction du taux de fausses traces reconstruites dès les premières étapes du processus de reconstruction. Dans l'optique de pouvoir mener à bien les futures études de désintégrations rares de particules, la violation CP dans le Modèle standard, et l'étude du plasma de Quark et Gluon dans les collisions Pb-Pb, une trajectographie précise dans LHCb est obligatoire.

Avec les mises à jour du détecteur prévues d'ici 2035 et l'augmentation anticipée des taux de données, les méthodes de trajectographie traditionnelles risquent de ne pas répondre aux exigences computationnelles, notamment dans les collisions noyau-noyau où des milliers de particules sont produites. Durant la thèse, nous explorerons une gamme de techniques basées sur l'apprentissage machine automatique, comme celles déjà appliquées avec succès dans le Vertex Locator (VELO) de LHCb, pour améliorer la performance de trajectographie de l'UT. En appliquant des méthodes variées, nous visons à améliorer la reconstruction des trajectoires aux premiers stades de la reconstruction, accroître l'efficacité de trajectographie et réduire le taux de fausses traces. Parmi ces techniques, les réseaux de neurones graphiques (Graph Neural Networks, GNN) représentent une option particulièrement prometteuse grâce à l'exploitation des corrélations spatiales et temporelles des hits du détecteur.

Cette exploration de nouvelles méthodes impliquera des développements adaptés au matériel hardware, qu’il s’agisse de GPU, CPU ou FPGA, tous potentiellement présent dans l'architecture de reconstruction du futur LHCb. Nous comparerons les différents algorithmes par rapport aux méthodes de trajectographie actuelles afin de quantifier les améliorations en termes de performance, de scalabilité et d'efficacité computationnelle. De plus, nous prévoyons d’intégrer les algorithmes les plus performants au sein du logiciel de LHCb de de garantir leur compatibilité avec les pipelines de données existants.

Caliste-3D CZT: développement d’un spectro-imageur gamma miniature, monolithique et hybride à efficacité améliorée dans la gamme 100 keV à 1 MeV et optimisé pour la détection de l’effet Compton et la localisation sous-pixel

L’observation multi-longueur d’onde des sources astrophysiques est la clé d’une compréhension globale des processus physiques en jeu. En raison de contraintes instrumentales, la bande spectrale de 0,1 à 1 MeV est celle qui souffre le plus d’une sensibilité insuffisante de détection dans les observatoires existants. Ce domaine permet d’observer les noyaux actifs de galaxies les plus enfouis et les plus lointains pour mieux comprendre la formation et l’évolution des galaxies à des échelles cosmologiques. Il relève des processus de nucléosynthèse des éléments lourds de notre Univers et l’origine des rayons cosmiques omniprésents dans l’Univers. La difficulté intrinsèque de la détection dans ce domaine spectral réside dans l’absorption de ces photons très énergétiques après des interactions multiples dans le matériau. Cela requiert une bonne efficacité de détection mais également une bonne localisation de toutes les interactions pour en déduire la direction et l’énergie du photon incident. Ces enjeux de détection sont identiques pour d’autres applications à fort impact sociétal et environnemental : le démantèlement et l’assainissement des installations nucléaires, le suivi de la qualité de l’air, la dosimétrie en radiothérapie.
Cette thèse d’instrumentation a pour objectif de développer un détecteur « 3D » polyvalent, exploitable dans les domaines de l’astrophysique et de la physique nucléaire, avec une meilleure efficacité de détection dans la gamme 100 keV à 1 MeV et des évènements Compton, ainsi que la possibilité de localiser les interactions dans le détecteur à mieux que la taille d’un pixel.
Plusieurs groupes dans le monde, dont le nôtre, ont développé des spectro-imageurs X dur à base de semi-conducteurs haute densité pixélisés pour l’astrophysique (CZT pour NuSTAR, CdTe pour Solar Orbiter et Hitomi), pour le synchrotron (Hexitec UK, RAL) ou pour des applications industrielles (Timepix, ADVACAM). Leur gamme d’énergie reste toutefois limitée à environ 200 keV (sauf pour Timepix) en raison de la faible épaisseur des cristaux et de leurs limitations intrinsèques d’exploitation. Pour repousser la gamme en énergie au-delà du MeV, il faut des cristaux plus épais associés à des bonnes propriétés de transport des porteurs de charge. Cela est actuellement possible avec du CZT, mais nécessite néanmoins de relever plusieurs défis.
Le premier défi était la capacité des industriels à fabriquer des cristaux de CZT homogènes épais. Les avancées dans ce domaine depuis plus de 20 ans nous permettent aujourd’hui d’envisager des détecteurs jusqu’à au moins 10 mm d’épaisseur (Redlen, Kromek).
Le principal défi technique restant est l’estimation précise de la charge générée par interaction d’un photon dans le semi-conducteur. Dans un détecteur pixélisé où seules les coordonnées X et Y de l’interaction sont enregistrées, augmenter l’épaisseur du cristal dégrade les performances spectrales. Obtenir l’information de profondeur d’interaction Z dans un cristal monolithique permet théoriquement de lever le verrou associé. Cela nécessite le déploiement de méthodes expérimentales, de simulations physiques, de conception de circuits de microélectronique de lecture et de méthodes d’analyse de données originales. De plus, la capacité à localiser les interactions dans le détecteur à mieux que la taille d’un pixel contribue à résoudre ce défi.

Analyse multi-messager des explosions de supernovae

Les supernovae a` effondrement de cœur jouent un rôle pivot dans l’évolution stellaire des étoiles massives, la naissance des étoiles à neutrons et des trous noir, et l’enrichissement chimique des galaxies. Comment explosent-elles ? Le mécanisme d’explosion peut être éclairé par l’analyse des signaux multi-messager: la production de neutrinos et d’ondes gravitationnelles est modulée par les instabilités hydrodynamiques pendant la seconde qui suit la formation d’une proto-étoile à neutrons.
Cette the`se propose d’utiliser la complémentarité des signaux multi-messager d’une supernova a` effondrement de cœur, à la lumière des simulations numériques de la dynamique de l’effondrement et de l'analyse perturbative, pour en extraire les informations physiques sur le mécanisme d’explosion.
Le projet abordera plus spécifiquement les propriétés multi-messager de l'instabilité du choc stationnaire ("SASI") et de l'instabilite´ de corotation ("low T/W") pour un progéniteur en rotation. Pour chacune de ces instabilités, les informations de composition des neutrinos et de polarisation des ondes gravitationnelles seront exploitées, ainsi que la corrélation entre ces signaux.

Astrophysique de laboratoire relativiste

La thèse proposée porte sur la modélisation numérique et théorique des plasmas ultra relativistes rencontrés dans certains objets astrophysiques, tels les sursauts gamma ou les nébuleuses de vent de pulsar, ainsi que dans de futures expériences d'interaction laser-plasma, faisceau-plasma ou gamma-plasma en régime extrême. Ces dernières pourront avoir lieu sur les installations laser multi-pétawatt actuellement en développement (par ex. le projet européen ELI) ou sur les accélérateurs de particules de nouvelle génération (par ex. l'installation américaine SLAC/FACET-II).
Les plasmas considérés, qui se caractérisent par un fort couplage entre particules, rayonnements énergétiques et mécanismes d'électrodynamique quantique, seront simulés numériquement au moyen d'un code « particle-in-cell » (PIC) développé au CEA/DAM depuis plusieurs années. Outre les effets collectifs propres aux plasmas, ce code décrit certains processus de rayonnement gamma et de création de paires électron-positron. Le but de la thèse sera d'y inclure de nouveaux mécanismes d'interaction photon-particule et photon-photon, puis d'examiner en détail leur impact dans diverses configurations expérimentales et astrophysiques.

RECHERCHE DE LA DÉSINTÉGRATION NUCLÉAIRE EN DEUX PHOTONS

La désintégration nucléaire à deux photons, ou double-gamma, est un mode de désintégration rare dans les noyaux atomiques, par lequel un noyau dans un état excité émet deux rayons gamma simultanément. Les noyaux pairs avec un premier état excité 0+ sont des cas favorables à la recherche d'une branche de désintégration double-gamma, puisque l'émission d'un seul rayon gamma est strictement interdite pour les transitions 0+ to 0+ en raison de la conservation du moment angulaire. La désintégration double-gamma reste encore une branche de désintégration très petite (<1E-4) en compétition avec les modes de désintégration dominants (de premier ordre) des électrons de conversion interne atomique (ICE) ou de la création de paires internes positron-électron (e+-e-) (IPC).

Le projet de thèse comporte deux parties expérimentales distinctes: Premièrement, nous stockons des ions nus (entièrement épluchés) dans leur état excité 0+ dans l'anneau de stockage d'ions lourds (ESR) au GSI pour rechercher la désintégration double-gamma dans plusieurs nucléides. Pour les atomes neutres, l'état excité 0+ est un état isomérique à durée de vie plutôt courte, de l'ordre de quelques dizaines à quelques centaines de nanosecondes. Cependant, aux énergies relativistes disponibles au GSI, tous les ions sont entièrement épluchés de leurs électrons atomiques et la désintégration par émission ICE n'est donc pas possible. Si l'état d'intérêt est situé en dessous du seuil de création de paires, le processus IPC n'est pas non plus possible. Par conséquent, les noyaux nus sont piégés dans un état isomérique à longue durée de vie, qui ne peut se désintégrer que par émission double-gamma vers l'état fondamental. La désintégration des isomères est identifiée par la spectroscopie de masse Schottky résolue dans le temps. Cette méthode permet de distinguer l'isomère et l'état fondamental par leur temps de révolution (très légèrement) différent dans l'ESR, et d'observer la disparition du pic de l'isomère dans le spectre de masse avec un temps de décroissance caractéristique. Des expériences établissant la désintégration double-gamma dans plusieurs nucléides (72Ge, 98Mo, 98Zr) ont déjà été réalisées avec succès et une nouvelle expérience a été acceptée par le comité de programme du GSI et sa réalisation est prévue pour 2025.

La deuxième partie concerne l'observation directe des photons émis à l'aide de la spectroscopie des rayons gamma. Alors que les expériences sur les anneaux de stockage permettent de mesurer la durée de vie partielle de la double désintégration gamma, des informations supplémentaires sur les propriétés nucléaires ne peuvent être obtenues qu'en mesurant les photons eux-mêmes. Une expérience test a été réalisée pour étudier sa faisabilité et les plans d'une étude plus détaillée devraient être élaborés dans le cadre du projet de doctorat.

Top