Recherche de la production par paire de bosons de Higgs dans le canal multilepton à 13.6 TeV avec le détecteur ATLAS

Dans le Modèle Standard (MS), le champ de Higgs est à l’origine de la brisure de symétrie électrofaible, conférant ainsi leur masse aux bosons W et Z. La découverte du boson de Higgs en 2012 au LHC a permis de confirmer expérimentalement l’existence de ce champ. Malgré des études approfondies, l’auto-couplage du boson de Higgs reste non mesuré, bien qu’il soit essentiel pour comprendre la forme du potentiel du Higgs et la stabilité du vide de l’univers. L’étude de la production par paires de bosons de Higgs (di-Higgs) est la seule manière directe d’accéder à ce paramètre et d’obtenir des informations clés sur la transition de phase électrofaible après le Big Bang. La production de di-Higgs est extrêmement rare (section efficace ~ 40 fb pour des collisions proton-proton avec une énergie de 13,6 TeV). Parmi les états finaux possibles, le canal multilepton est prometteur grâce à sa signature cinématique distinctive, bien que complexe en raison de la diversité des topologies et des bruits de fond. Les avancées récentes en intelligence artificielle, en particulier les architectures de type transformer respectant les symétries physiques, ont amélioré de manière significative la reconstruction d’événements complexes dans des canaux tels que HH?4b ou or HH?bbtt. Appliquer ces techniques au canal multilepton offre un fort potentiel pour améliorer la sensibilité. Ce projet de thèse se concentrera sur la recherche de la production de di-Higgs dans l’état final multilepton avec l’ensemble des données du Run 3 d’ATLAS à 13,6 TeV, en s’appuyant sur les travaux en cours des équipes de l’Irfu sur le canal ttH multilepton afin de développer des méthodes avancées d’analyse et de reconstruction basées sur l’intelligence artificielle. L’objectif du projet est d’approcher la sensibilité du MS sur l’auto-couplage du boson de Higgs.

Désintégration du boson de Higgs en un boson Z et un photon et résolution temporelle du calorimètre électromagnétique de CMS

La thèse se concentre sur la physique du boson de Higgs à travers une de ses désintégrations les plus rares et encore non observées, celle en un boson Z et un photon (canal Zgamma). Cette désintégration complète le portrait du boson de Higgs déssiné jusqu'à présent et implique de manière unique tous les bosons neutres actuellement connus (Higgs, Z, photon), tout en étant sensible à éventuels processus de physique au délà du modèle standard. L'état final de l'analyse consiste en deux leptons de désintégration du boson Z (muons ou électrons, pour cette étude) et un photon. Évènements produits par d'autres processus du modèle standard et contenant deux leptons et un photon (ou des particules mal identifiées pour telles) constituent le bruit de fond de l'analyse. Avec toutes les données recueillies durant le Run2 du LHC (2015-2018) et le Run3 (2021-2026) il est possible de mettre en évidence cette désintégration, c'est-à-dire de l'observer avec une significance statistique de plus que trois déviations standard.

La thèse inclut aussi une partie instrumentale d'optimisation de la résolution en temps du calorimètre électromagnétique de CMS (ECAL). Bien que conçu pour des mesures de précision en énergie, le ECAL a aussi une excellente résolution sur le temps d'arrivée des photons et des électrons (environ 150 ps en collisions, 70 ps en faisceau test, avec conditions idéales). Dans un état final peuplé par des photons provenant de plusieurs dizaines d'évènements superposés (pileup), le temps d'arrivée d'un photon aide à vérifier sa compatibilité avec le vertex de désintégration du boson de Higgs. Cela sera crucial pendant la phase à haute luminosité du LHC (2029-), quand le nombre d'évenements superposé sera environ un facteur 3 plus grand qu'aujourd'hui. Une nouvelle électronique de lecture du ECAL est en train d'être produite et sera installée dans ECAL et CMS pendant la durée de la thèse. Elle permettra d'atteindre une résolution en temps de 30 ps pour photons et électrons de haute énergie. Cette performance a été mésurée en test sur faisceau d'un module du ECAL en conditions idéales (pas de champs magnétique, pas de matériel du trajectographe devant ECAL, pas de pileup): la thèse vise à dévélopper des algorithmes pour maintenir cette performance au sein de CMS.

Le travail de thèse est une continuation de l'analyse Z? en cours dans le groupe CMS du CEA Saclay et de l'analyse des performance en temps du ECAL, où le groupe de Saclay est le leader. Des outils d'analyse simples, robustes et performant, écrits en C++ moderne, basé sur le cadre d'analyse ROOT, permettent de comprendre et contribuer à toutes les étapes d'analyse, à partir de données brutes jusqu'aux résultats publiés. Le groupe CMS de Saclay a des responsabilités de premier plan dans CMS depuis sa construction, incluant une expertise approfondie en physique du Higgs, en reconstruction d'électrons et de photons, en simulation de détecteurs et en techniques d'apprentissage automatique et intelligence artificielle.

Des déplacements réguliers au CERN sont proposés pour présenter les résultas du travail de thèse à la collaboration CMS et pour participer aux tests en laboratoire prévus pour la nouvelle électronique d'ECAL, ainsi qu'à son installation.

MINI-BINGO : vers la révélation de la nature du neutrino

BINGO est un projet novateur en physique des neutrinos, conçu pour poser les bases d'une expérience bolométrique à grande échelle dédiée à la recherche de la désintégration double bêta sans neutrinos. L’objectif est de réaliser une expérience avec un indice de bruit de fond extrêmement bas, de l’ordre de 10^-5 coups/(keV·kg·an), tout en atteignant une très haute résolution en énergie dans la région d’intérêt. Ces performances permettront d’explorer la violation du nombre leptonique avec une sensibilité sans précédent.

Le projet repose sur la technologie des bolomètres luminescents, particulièrement efficaces pour rejeter le bruit de fond dominant, à savoir les alphas de surface. Il se concentre sur deux isotopes extrêmement prometteurs, le molybdène-100 (100Mo) et le tellure-130 (130Te), aux propriétés complémentaires, tous deux dignes d’intérêt pour les recherches futures à grande échelle.

BINGO introduira trois innovations majeures dans le domaine bien établi des bolomètres hybrides chaleur-lumière. La première consiste en une augmentation de la sensibilité des détecteurs de lumière grâce à l’amplification Neganov-Luke, permettant un gain d’un ordre de grandeur. La deuxième innovation repose sur un assemblage de détecteurs entièrement repensé, capable de réduire d’au moins un ordre de grandeur la contribution de la radioactivité de surface. Enfin, pour la première fois dans un ensemble de macrobolomètres, un écran actif interne basé sur des scintillateurs BGO ultrapurs, avec lecture bolométrique de la lumière, permettra de supprimer efficacement le bruit de fond gamma externe.

Dans le cadre de cette thèse, l’étudiant(e) participera à l’assemblage et à l’installation du démonstrateur MINI-BINGO dans le cryostat récemment mis en place au Laboratoire Souterrain de Modane. Il ou elle contribuera à la prise de données, à leur analyse et à l’estimation du niveau de rejet du bruit de fond rendu possible par les performances finales du détecteur.

CUPID-Stage I: Detector optimization and analysis in the context of a next generation 0nbb search

The CUPID experiment (CUORE Upgrade with Particle IDentification) aims to achieve unprecedented sensitivity for the detection of neutrinoless double beta decay (0nßß) using an array of 1596 lithium molybdate (Li2MoO4) crystals of ~450 kg mass. If detected this process would be a direct observation new physics in the lepton sector: in example it violates lepton number by 2 units. Dependent on the model it can provide valuable insight into the neutrino mass-scale and possbily to matter generation in the Universe through leptogenesis.

The use of lithium molybdate for this study is particularly advantageous due to their scintillation properties and the high Q-value of the decay process, which lies above most environmental gamma backgrounds. The CUPID experiment employs this material as cryogenic calorimetric detectors, where the heat signal from particle interactions of O (100 microK/MeV) are registered in a sensitive thermistor at a temperature of ~10 mK. Thanks to the high Q-value Mo-100 features a particularly high sensitivity in terms of large phase space factor and nuclear transition matrix element. This will also allow for precision studies and tests of the standard model, through analyses of the shape of another process: the so-called 2 neutrino double beta decay (2nbb), which is a standard model allowed process. However, this rare process (half-life of 7x10^17yr) is not only an interesting particle/nuclear physics target, it is also expected to contribute the most important background in CUPID: the random coincidence of two events adding up in energy to the Q-value of the 0nßß search.

CUPID aims to deploy its new detector array in two phases: An initial detector array with 1/3 of the mass will be deployed by 2030. In the mean time several tower scale measurement and optimization campaigns during the time of this thesis project will allow to analyze and optimize the detector performance of the CUPID detector modules. The further suppression of this so called pile-up background through detector optimization (acting on the sensor attachment of the light detector with a robotic assembly station developed at CEA) and advanced analysis techniques within this thesis will allow to enhance the sensitivity and science reach of CUPID. A further extension of the analysis techniques developed in this thesis to the processing of an array of O(1000) detectors will be tested with the existing TeO2 detecor array of CUORE. In the context of this process the developed analysis techniques will contribute to the final science analyses of CUORE, the leading experiment for 0nßß search with Te-130.

Optimisation de détecteurs de rayonnement gamma pour l’imagerie médicale. Tomographie par émission de positrons temps de vol

Introduction
Les technologies innovantes d’imagerie fonctionnelles contribuent à la priorité sur les Médecines du Futur du CEA. La tomographie par émission de positrons (TEP) est une technique d'imagerie médicale nucléaire largement utilisée en oncologie et en neurobiologie.
La désintégration du traceur radioactif émet des positrons, qui s'annihilent en deux photons de 511 keV. Ces photons sont détectées en coïncidence et utilisées pour reconstituer la distribution de l'activité du traceur dans le corps du patient.
Nous vous proposons de contribuer au développement d’une technologie ambitieuse et brevetée : ClearMind. Le premier prototype est à nos laboratoires. Ce détecteur de photons gamma utilise un scintillant cristal monolithique de haute densité et grand Z, dans lequel sont produits des photons Cherenkov et de scintillation. Ces photons optiques sont convertis en électrons par une couche photo-électrique et multipliés dans une galette à microcanaux. Les signaux électriques induits sont amplifiés par des amplificateurs gigahertz et numérisés par les modules d'acquisition rapide SAMPIC. La face opposée du cristal sera équipée d'une matrice de photo-détecteur en silicium (SiPM).
Aujourd’hui nous disposons d’un premier prototype. Nous travaillons a en construire deux supplémentaires.

Le travail proposé
Vous travaillerez dans un laboratoire d’instrumentation avancé dans un environnement de physique des particules.
Il s’agira d’abord d’optimiser les « composants » des détecteurs ClearMind, pour parvenir à des performances nominales. Nous travaillerons sur les cristaux scintillants, les interfaces optiques, les couches photo-électriques et les photo-détecteurs rapides associés (MCP-PMT et SiPM), les électroniques de lectures.
Il s’agira ensuite de caractériser les performances des détecteurs prototypes sur nos bancs de mesure en développement continu. Les données acquises seront interprétées au moyen de logiciels d’analyse « maison » écris en langage C++ et/ou Python.
Il s’agira enfin de confronter les propriétés mesurées de nos détecteurs à des simulations dédiées (Monté-Carlo sur logiciels Geant4/Gate).
Un effort particulier sera con-sacré au développement de cristaux scintillants ultra-rapides dans le contexte d’une collaboration européenne.
Supervision
Le candidat retenu travaillera sous la supervision conjointe de Dominique Yvon et Viatcheslav Sharyy DRF/ IRFU & BIOMAPS. Le groupe CaLIPSO de l'IRFU & BIOMAPS est spécialisé dans le développement et la caractérisation de détecteurs TEP innovant. Dans le cadre du projet, nous avons une étroite collaboration avec le l’IJCLabs d’Orsay, qui développe nos électroniques de lecture et d’acquisition, le CEA/DM2S qui travaille notamment sur des algorithmes d'IA de confiance, le CPPM de Marseille, qui évalue nos détecteurs dans des conditions d’acquisition d’imagerie TEP et l’UMR BIOMAPS (CEA/SHFJ), travaillant sur les algorithmes de calculs d’image.
Exigences
Des connaissances en physique de l’interaction particules-matière, de la radioactivité et des principes des détecteurs de particules sont indispensables. Un goût prononcé pour l’instrumentation et le travail de laboratoire est recommandé. Il est important d'avoir des compétences de base en programmation, par exemple C++, logiciel de simulation physique Gate/Geant4.
Compétences acquises
Bonne connaissance des technologies de pointe des détecteurs de particules et des tomographes à émission de positrons. Principes et techniques de simulation de l'interaction des particules-matière et les systèmes de détection. Analyse de données complexes.
Contact
Dominique Yvon, dominique.yvon@cea.fr
Viatcheslav Sharyy, viatcheslav.sharyy@cea.fr

Etudes du transport d’un faisceau d’électrons dans du gaz

Le Laboratoire Faisceaux et Electronique de Puissance utilise des faisceaux d’électrons relativistes pulsés intenses afin d’étudier la réponse thermo-mécanique des matériaux. Ces expériences sont réalisées sur l’installation CESAR du CEA CESTA, une installation délivrant un faisceau d'électrons très intense (800 keV, 300 kA) en un temps très bref (quelques dizaines de nanosecondes). Le faisceau doit être transporté sur une dizaine de centimètres, avant d’atteindre la cible, dans laquelle il sera soumis à un champ magnétique et interagira avec du gaz. L'ionisation du gaz par le faisceau limite les effets de charge d'espace et permet ainsi de transporter le faisceau jusqu'à la cible étudiée. La physique du transport du faisceau dans la chambre d'expérience est complexe, justifiant des études expérimentales et numériques pour donner une description pertinente du faisceau qui interagit avec les matériaux étudiés.
Une partie des expériences sur CESAR est dédiée à la caractérisation du faisceau d'électrons. Cependant, le nombre de tirs étant limité, une étude systématique de la physique mise en jeu n'est pas envisageable sur ce moyen. En revanche, l'installation RKA, délivrant un faisceau moins intense que CESAR, est adaptée pour la réalisation de tirs d'étude. RKA permet donc d’étudier le comportement d'un faisceau propagé dans un gaz et de mettre au point les techniques et diagnostics associés. En outre, un code suivant la méthode PIC (Particle In Cell) permet de simuler le transport d’un faisceau d’électrons dans du gaz est actuellement développé.
Les expériences serviront alors à valider le code de calcul dans les différents régimes de transport. Le(la) candidat(e) devra choisir ou proposer des diagnostics afin de comparer les grandeurs représentatives du faisceau ou du plasma issues de l'expérience aux résultats de la simulation.

La thèse se déroulera entièrement au CEA/CESTA, situé au BARP (33) au sud de Bordeaux.

Top